Overview: Computability Theory

- Turing-Computability
- LOOP- and WHILE-Computability
- GOTO-Computability

Functional Models of Computation

- Primitive and μ-Recursion
- (Semi-)Decidability
- Halting Problem
- Reductions
- Rice's Theorem
- Other Problems

Imperative Models of Computation

- Undecidable Problems

Further Reading (German)

- Literature for this Chapter (German)

Theoretische Informatik – kurz gefasst by Uwe Schöning (5th edition)
- Chapter 2.3
- Chapter 2.5
D2. LOOP- and WHILE-Computability

D2.1 Introduction

Formal Models of Computation: LOOP/WHILE/GOTO

Formal Models of Computation
- Turing machines
- LOOP, WHILE and GOTO programs
- primitive recursive and μ-recursive functions

In this and the following chapter we get to know three simple models of computation (programming languages) and compare their power to Turing machines:
- LOOP programs \hookrightarrow today
- WHILE programs \hookrightarrow today
- GOTO programs \hookrightarrow next chapter

In this and the following chapter we get to know three simple models of computation (programming languages) and compare their power to Turing machines:
- LOOP programs \hookrightarrow today
- WHILE programs \hookrightarrow today
- GOTO programs \hookrightarrow next chapter

LOOP, WHILE and GOTO programs are structured like programs in (simple) “traditional” programming languages
- use finitely many variables from the set $\{x_0, x_1, x_2, \ldots\}$ that can take on values in \mathbb{N}_0
- differ from each other in the allowed “statements”
D2. LOOP- and WHILE-Computability

D2.2 LOOP Programs

LOOP Programs: Syntax

Definition (LOOP Program)
LOOP programs are inductively defined as follows:
- \(x_i := x_j + c \) is a LOOP program for every \(i, j, c \in \mathbb{N}_0 \) (addition)
- \(x_i := x_j - c \) is a LOOP program for every \(i, j, c \in \mathbb{N}_0 \) (modified subtraction)
- If \(P_1 \) and \(P_2 \) are LOOP programs, then so is \(P_1;P_2 \) (composition)
- If \(P \) is a LOOP program, then so is \(\text{LOOP } x_i \text{ DO } P \text{ END} \) for every \(i \in \mathbb{N}_0 \) (LOOP loop)

German: LOOP-Programm, Addition, modifizierte Subtraktion, Komposition, LOOP-Schleife

LOOP Programs: Semantics

Definition (Semantics of LOOP Programs)
A LOOP program computes a \(k \)-ary function \(f : \mathbb{N}_0^k \to \mathbb{N}_0 \). The computation of \(f(n_1, \ldots, n_k) \) works as follows:
1. Initially, the variables \(x_1, \ldots, x_k \) hold the values \(n_1, \ldots, n_k \).
 All other variables hold the value 0.
2. During computation, the program modifies the variables as described on the following slides.
3. The result of the computation \(f(n_1, \ldots, n_k) \) is the value of \(x_0 \) after the execution of the program.

German: \(P \) berechnet \(f \)
Definition (Semantics of LOOP Programs)

effect of $x_i := x_j - c$:

- The variable x_i is assigned the current value of x_j minus c if this value is non-negative.
- Otherwise x_i is assigned the value 0.
- All other variables retain their value.

Definition (LOOP-Computable)

A function $f : \mathbb{N}_0^k \rightarrow \mathbb{N}_0$ is called LOOP-computable if a LOOP program that computes f exists.

German: f ist LOOP-berechenbar

Note: non-total functions are never LOOP-computable. (Why not?)
LOOP Programs: Example

Example (LOOP program for \(f(x_1, x_2) \))

LOOP \(x_1 \) DO
 LOOP \(x_2 \) DO
 \(x_0 := x_0 + 1 \)
 END
END

Which (binary) function does this program compute?

D2.3 Syntactic Sugar

Syntactic Sugar or Essential Feature?

- We investigate the power of programming languages and other computation formalisms.
- Rich language features help when writing complex programs.
- Minimalistic formalisms are useful for proving statements over all programs.
 "conflict of interest!"

Idea:
- Use minimalistic core for proofs.
- Use syntactic sugar when writing programs.

German: syntaktischer Zucker

Example: Syntactic Sugar

Example (syntactic sugar)

We propose five new syntax constructs (with the obvious semantics):

- \(x_i := x_j \) for \(i, j \in \mathbb{N}_0 \)
- \(x_i := c \) for \(i, c \in \mathbb{N}_0 \)
- \(x_i := x_j + x_k \) for \(i, j, k \in \mathbb{N}_0 \)
- IF \(x_i \neq 0 \) THEN \(P \) END for \(i \in \mathbb{N}_0 \)
- IF \(x_i = c \) THEN \(P \) END for \(i, c \in \mathbb{N}_0 \)

Can we simulate these with the existing constructs?
Example: Syntactic Sugar

Example (syntactic sugar)
\[x_i := x_j \] for \(i, j \in \mathbb{N}_0 \)

Simple abbreviation for \(x_i := x_j + 0 \).

Example (syntactic sugar)
\[x_i := c \] for \(i, c \in \mathbb{N}_0 \)

Simple abbreviation for \(x_i := x_j + c \),
where \(x_j \) is a fresh variable, i.e., an otherwise unused variable that is not an input variable.
(Thus \(x_j \) must always have the value 0 in all executions.)

Example (syntactic sugar)
\[x_i := x_j + x_k \] for \(i, j, k \in \mathbb{N}_0 \)

Abbreviation for:
\[x_i := x_j; \]
\[\text{LOOP } x_k \text{ DO} \]
\[x_i := x_i + 1 \]
\[\text{END} \]

Analogously we will also use the following:
\[x_i := x_j - x_k \]
\[x_i := x_j + x_k - c - x_m + d \]
\[\text{etc.} \]

Example (syntactic sugar)
\[\text{IF } x_i \neq 0 \text{ THEN } P \text{ END for } i \in \mathbb{N}_0 \]

Abbreviation for:
\[x_j := 0; \]
\[\text{LOOP } x_j \text{ DO} \]
\[x_j := 1 \]
\[\text{END;} \]
\[\text{LOOP } x_j \text{ DO} \]
\[P \]
\[\text{END} \]

where \(x_j \) is a fresh variable.
Example: Syntactic Sugar

Example (syntactic sugar)

IF \(\mathbf{x}_i = \mathbf{c} \) THEN \(P \) END for \(\mathbf{i}, \mathbf{c} \in \mathbb{N}_0 \)

Abbreviation for:

\[
\begin{align*}
\mathbf{x}_j & := 1; \\
\mathbf{x}_k & := \mathbf{x}_j - \mathbf{c}; \\
& \text{IF } \mathbf{x}_k \neq 0 \text{ THEN } \mathbf{x}_j := 0 \text{ END;} \\
\mathbf{x}_k & := \mathbf{c} - \mathbf{x}_i; \\
& \text{IF } \mathbf{x}_k \neq 0 \text{ THEN } \mathbf{x}_j := 0 \text{ END;} \\
& \text{IF } \mathbf{x}_j \neq 0 \text{ THEN } \\
& \quad P \\
& \text{END}
\end{align*}
\]

where \(\mathbf{x}_j \) and \(\mathbf{x}_k \) are fresh variables.

Can We Be More Minimalistic?

- We see that some common structural elements such as IF statements are unnecessary because they are syntactic sugar.
- Can we make LOOP programs even more minimalistic than in our definition?

Simplification 1

Instead of \(\mathbf{x}_i := \mathbf{x}_j + \mathbf{c} \) and \(\mathbf{x}_j := \mathbf{x}_j - \mathbf{c} \) it suffices to only allow the constructs

- \(\mathbf{x}_i := \mathbf{x}_j \),
- \(\mathbf{x}_j := \mathbf{x}_j + 1 \) and
- \(\mathbf{x}_j := \mathbf{x}_j - 1 \).

Why?

Can We Be More Minimalistic?

- We see that some common structural elements such as IF statements are unnecessary because they are syntactic sugar.
- Can we make LOOP programs even more minimalistic than in our definition?

Simplification 2

The construct \(\mathbf{x}_i := \mathbf{x}_j \) can be omitted because it can be simulated with other constructs:

\[
\begin{align*}
& \text{LOOP } \mathbf{x}_i \text{ DO} \\
& \quad \mathbf{x}_i := \mathbf{x}_i - 1 \\
& \text{END;} \\
& \text{LOOP } \mathbf{x}_j \text{ DO} \\
& \quad \mathbf{x}_j := \mathbf{x}_j + 1 \\
& \text{END}
\end{align*}
\]
WHILE Programs: Syntax

Definition (WHILE Program)

WHILE programs are inductively defined as follows:

- $x_i := x_j + c$ is a WHILE program for every $i, j, c \in \mathbb{N}_0$ (addition)
- $x_i := x_j - c$ is a WHILE program for every $i, j, c \in \mathbb{N}_0$ (modified subtraction)
- If P_1 and P_2 are WHILE programs, then so is $P_1; P_2$ (composition)
- If P is a WHILE program, then so is $\text{WHILE } x_i \neq 0 \text{ DO } P \text{ END}$ for every $i \in \mathbb{N}_0$ (WHILE loop)

WHILE Programs: Semantics

Definition (Semantics of WHILE Programs)

The semantics of WHILE programs is defined exactly as for LOOP programs.

- Effect of $\text{WHILE } x_i \neq 0 \text{ DO } P \text{ END}$:
 - If x_i holds the value 0, program execution finishes.
 - Otherwise execute P.
 - Repeat these steps until execution finishes (potentially infinitely often).

WHILE-Computable Functions

Definition (WHILE-Computable)

A function $f : \mathbb{N}_0^k \rightarrow \mathbb{N}_0$ is called WHILE-computable if a WHILE program that computes f exists.

German: f ist WHILE-berechenbar

WHILE-Computability vs. LOOP-Computability

Theorem

Every LOOP-computable function is WHILE-computable. The converse is not true.

WHILE programs are therefore **strictly more powerful** than LOOP programs.

German: echt mächtiger
WHILE-Computability vs. LOOP-Computability

Proof.
Part 1: Every LOOP-computable function is WHILE-computable.

Given any LOOP program, we construct an equivalent WHILE program, i.e., one computing the same function.
To do so, replace each occurrence of LOOP x_i DO P END with

$$x_j := x_i;$$

WHILE $x_j \neq 0$ DO

$$x_j := x_j - 1;$$

P

END

where x_j is a fresh variable.

Proof (continued).
Part 2: Not all WHILE-computable functions are LOOP-computable.

The WHILE program

$$x_1 := 1;$$

WHILE $x_1 \neq 0$ DO

$$x_1 := 1$$

END

computes the function $\Omega : \mathbb{N}_0 \to \mathbb{N}_0$ that is undefined everywhere. Ω is hence WHILE-computable, but not LOOP-computable (because LOOP-computable functions are always total).

D2. LOOP- and WHILE-Computability

D2.5 Digression: the Ackermann Function

LOOP vs. WHILE: Is There a Practical Difference?

- We have shown that WHILE programs are strictly more powerful than LOOP programs.
- The example we used is not very relevant in practice because our argument only relied on the fact that LOOP-computable functions are always total.
- To terminate for every input is not much of a problem in practice. (Quite the opposite.)
- Are there any total functions that are WHILE-computable, but not LOOP-computable?
Ackermann Function: History

- David Hilbert conjectured that all computable total functions are primitive recursive (1926).
- We will see what this means in Chapter D4.
- Wilhelm Ackermann refuted the conjecture by supplying a counterexample (1928).
- The counterexample was simplified by Rózsa Péter (1935).
- here: simplified version

Definition (Ackermann function)
The Ackermann function \(a : \mathbb{N}_0^2 \rightarrow \mathbb{N}_0 \) is defined as follows:

\[
\begin{align*}
 a(0, y) &= y + 1 & \text{for all } y \geq 0 \\
 a(x, 0) &= a(x - 1, 1) & \text{for all } x > 0 \\
 a(x, y) &= a(x - 1, a(x, y - 1)) & \text{for all } x, y > 0
\end{align*}
\]

Table of Values

<table>
<thead>
<tr>
<th>(y = 0)</th>
<th>(y = 1)</th>
<th>(y = 2)</th>
<th>(y = 3)</th>
<th>(y = k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a(0, y))</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(a(1, y))</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>(a(2, y))</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>(a(3, y))</td>
<td>5</td>
<td>13</td>
<td>29</td>
<td>61</td>
</tr>
<tr>
<td>(a(4, y))</td>
<td>13</td>
<td>(2^{65536} - 3)</td>
<td>(2^{65536} - 3)</td>
<td>(2^{2^{k+3} - 3})</td>
</tr>
</tbody>
</table>

Computability of the Ackermann Function

Theorem
The Ackermann function is WHILE-computable, but not LOOP-computable.

(Without proof.)
D2. LOOP- and WHILE-Computability Digression: the Ackermann Function

Computability of the Ackermann Function: Proof Idea

proof idea:

▶ WHILE-computability:
 ▶ show how WHILE programs can simulate a stack
 (essentially: push/pop with encode/decode from Chapter D4)
 ▶ dual recursion by using a stack
 ⇒ WHILE program is easy to specify

▶ no LOOP-computability:
 ▶ show that there is a number \(k \) for every LOOP program
 such that the computed function value is smaller than \(a(k, n) \),
 if \(n \) is the largest input value
 ▶ proof by structural induction; use \(k = \text{“program length”} \)
 ⇒ Ackermann function grows faster
 than every LOOP-computable function

D2.6 Summary

Summary: LOOP and WHILE Programs

two new models of computation for numerical functions:
 ▶ LOOP programs and WHILE programs
 ▶ closer to typical programming languages than Turing machines

Summary: Comparing Models of Computation

general approach to compare power of formalisms:
 ▶ How can features be used to simulate other features
 (cf. syntactic sugar, minimalistic formalisms)?
 ▶ How can one formalism simulate the other formalism?
Power of LOOP vs. WHILE

We now know:

▶ WHILE programs are strictly more powerful than LOOP programs.
▶ WHILE-, but not LOOP-computable functions:
 ▶ simple example: function that is undefined everywhere
 ▶ more interesting example (total function): Ackermann function, which grows too fast to be LOOP-computable

How do LOOP and WHILE programs relate to Turing machines?

⇒ next chapter