
Theory of Computer Science
D1. Turing-Computability

Gabriele Röger

University of Basel

April 11, 2018

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 1 / 26

Theory of Computer Science
April 11, 2018 — D1. Turing-Computability

D1.1 Computations

D1.2 Turing-Computable Functions

D1.3 Examples

D1.4 Summary

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 2 / 26

Overview: Course

contents of this course:

I logic X
. How can knowledge be represented?
. How can reasoning be automated?

I automata theory and formal languages X
. What is a computation?

I computability theory
. What can be computed at all?

I complexity theory
. What can be computed efficiently?

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 3 / 26

Main Question

Main question in this part of the course:

What can be computed
by a computer?

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 4 / 26

Overview: Computability Theory

Computability

Imperative Models
of Computation

Turing-Computability

LOOP- and WHILE-
Computability

GOTO-Computability

Functional Models
of Computation

Primitive and
µ-Recursion

Undecidable
Problems

(Semi-)Decidability

Halting Problem

Reductions

Rice’s Theorem

Other Problems

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 5 / 26

Further Reading (German)

Literature for this Chapter (German)

Theoretische Informatik – kurz gefasst
by Uwe Schöning (5th edition)

I Chapter 2.1

I Chapter 2.2

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 6 / 26

Further Reading (English)

Literature for this Chapter (English)

Introduction to the Theory of Computation
by Michael Sipser (3rd edition)

I Chapter 3.1

Notes:

I Sipser does not cover all topics we do.

I His definitions differ slightly from ours.

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 7 / 26

D1. Turing-Computability Computations

D1.1 Computations

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 8 / 26

D1. Turing-Computability Computations

Computation

What is a computation?

I intuitive model of computation (pen and paper)

I vs. computation on physical computers

I vs. formal mathematical models

In the following chapters we investigate
models of computation for partial functions f : Nk

0 →p N0.

I no real limitation: arbitrary information
can be encoded as numbers

German: Berechnungsmodelle

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 9 / 26

D1. Turing-Computability Computations

Formal Models of Computation

Formal Models of Computation
I Turing machines

I LOOP, WHILE and GOTO programs

I primitive recursive and µ-recursive functions

In the next chapters we will

I get to know these models and

I compare them according to their power.

German: Mächtigkeit

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 10 / 26

D1. Turing-Computability Computations

Church-Turing Thesis

Church-Turing Thesis

All functions that can be computed in the intuitive sense
can be computed by a Turing machine.

German: Church-Turing-These

I cannot be proven (why not?)

I but we will collect evidence for it

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 11 / 26

D1. Turing-Computability Turing-Computable Functions

D1.2 Turing-Computable Functions

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 12 / 26

D1. Turing-Computability Turing-Computable Functions

Overview: Computability Theory

Computability

Imperative Models
of Computation

Turing-Computability

LOOP- and WHILE-
Computability

GOTO-Computability

Functional Models
of Computation

Primitive and
µ-Recursion

Undecidable
Problems

(Semi-)Decidability

Halting Problem

Reductions

Rice’s Theorem

Other Problems

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 13 / 26

D1. Turing-Computability Turing-Computable Functions

Reminder: Deterministic Turing Machine (DTM)

Definition (Deterministic Turing Machine)

A deterministic Turing machine (DTM) is given by a 7-tuple
M = 〈Q,Σ, Γ, δ, q0,�,E 〉 with:

I Q finite, non-empty set of states

I Σ 6= ∅ finite input alphabet

I Γ ⊃ Σ finite tape alphabet

I δ : (Q \ E)× Γ→ Q × Γ× {L,R,N} transition function

I q0 ∈ Q start state

I � ∈ Γ \ Σ blank symbol

I E ⊆ Q end states

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 14 / 26

D1. Turing-Computability Turing-Computable Functions

Reminder: Configurations and Computation Steps

How do Turing Machines Work?

I configuration: 〈α, q, β〉 with α ∈ Γ∗, q ∈ Q, β ∈ Γ+

I one computation step: c ` c ′ if one computation step
can turn configuration c into configuration c ′

I multiple computation steps: c `∗ c ′ if 0 or more computation
steps can turn configuration c into configuration c ′

(c = c0 ` c1 ` c2 ` · · · ` cn−1 ` cn = c ′, n ≥ 0)

(Definition of `, i.e., how a computation step changes the
configuration, is not repeated here. Chapter C8)

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 15 / 26

D1. Turing-Computability Turing-Computable Functions

Computation of Functions?

How can a DTM compute a function?

I “Input” x is the initial tape content

I “Output” f (x) is the tape content (ignoring blanks
at the left and right) when reaching an end state

I If the TM does not stop for the given input,
f (x) is undefined for this input.

Which kinds of functions can be computed this way?

I directly, only functions on words: f : Σ∗ →p Σ∗

I interpretation as functions on numbers f : Nk
0 →p N0:

encode numbers as words

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 16 / 26

D1. Turing-Computability Turing-Computable Functions

Turing Machines: Computed Function

Definition (Function Computed by a Turing Machine)

A DTM M = 〈Q,Σ, Γ, δ, q0,�,E 〉 computes the (partial) function
f : Σ∗ →p Σ∗ for which:

for all x , y ∈ Σ∗: f (x) = y iff 〈ε, q0, x〉 `∗ 〈� . . .�, qe, y� . . .�〉

with qe ∈ E . (special case: initial configuration 〈ε, q0,�〉 if x = ε)

German: DTM berechnet f

I What happens if symbols from Γ \ Σ (e. g., �) occur in y?

I What happens if the read-write head is not
on the first symbol of y at the end?

I Is f uniquely defined by this definition? Why?

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 17 / 26

D1. Turing-Computability Turing-Computable Functions

Turing-Computable Functions on Words

Definition (Turing-Computable, f : Σ∗ →p Σ∗)

A (partial) function f : Σ∗ →p Σ∗ is called Turing-computable
if a DTM that computes f exists.

German: Turing-berechenbar

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 18 / 26

D1. Turing-Computability Turing-Computable Functions

Encoding Numbers as Words

Definition (Encoded Function)

Let f : Nk
0 →p N0 be a (partial) function.

The encoded function f code of f is the partial function
f code : Σ∗ →p Σ∗ with Σ = {0, 1, #} and f code(w) = w ′ iff

I there are n1, . . . , nk , n
′ ∈ N0 such that

I f (n1, . . . , nk) = n′,

I w = bin(n1)# . . . #bin(nk) and

I w ′ = bin(n′).

Here bin : N0 → {0, 1}∗ is the binary encoding
(e. g., bin(5) = 101).

German: kodierte Funktion
Example: f (5, 2, 3) = 4 corresponds to f code(101#10#11) = 100.

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 19 / 26

D1. Turing-Computability Turing-Computable Functions

Turing-Computable Numerical Functions

Definition (Turing-Computable, f : Nk
0 →p N0)

A (partial) function f : Nk
0 →p N0 is called Turing-computable

if a DTM that computes f code exists.

German: Turing-berechenbar

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 20 / 26

D1. Turing-Computability Examples

D1.3 Examples

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 21 / 26

D1. Turing-Computability Examples

Example: Turing-Computable Functions (1)

Example

Let Σ = {a, b, #}.
The function f : Σ∗ →p Σ∗ with f (w) = w#w for all w ∈ Σ∗

is Turing-computable.

 blackboard

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 22 / 26

D1. Turing-Computability Examples

Example: Turing-Computable Functions (2)

Example

The following numerical functions are Turing-computable:

I succ : N0 →p N0 with succ(n) := n + 1

I pred1 : N0 →p N0 with pred1(n) :=

{
n − 1 if n ≥ 1

0 if n = 0

I pred2 : N0 →p N0 with pred2(n) :=

{
n − 1 if n ≥ 1

undefined if n = 0

 blackboard/exercises

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 23 / 26

D1. Turing-Computability Examples

Example: Turing-Computable Functions (3)

Example

The following numerical functions are Turing-computable:

I add : N2
0 →p N0 with add(n1, n2) := n1 + n2

I sub : N2
0 →p N0 with sub(n1, n2) := max{n1 − n2, 0}

I mul : N2
0 →p N0 with mul(n1, n2) := n1 · n2

I div : N2
0 →p N0 with div(n1, n2) :=

{⌈
n1
n2

⌉
if n2 6= 0

undefined if n2 = 0

 sketch?

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 24 / 26

D1. Turing-Computability Summary

D1.4 Summary

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 25 / 26

D1. Turing-Computability Summary

Summary

I main question: what can a computer compute?

I approach: investigate formal models of computation

I first: deterministic Turing machines

I Turing-computable function f : Σ∗ →p Σ∗:
there is a DTM that transforms every input w ∈ Σ∗

into the output f (w) (undefined if DTM does not stop
or stops in invalid configuration)

I Turing-computable function f : Nk
0 →p N0:

ditto; numbers encoded in binary and separated by #

Gabriele Röger (University of Basel) Theory of Computer Science April 11, 2018 26 / 26

	Computations
	Turing-Computable Functions
	Examples
	Summary

