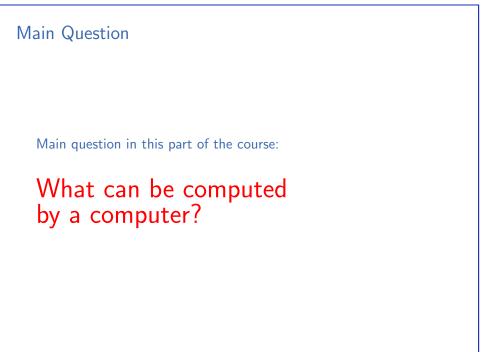
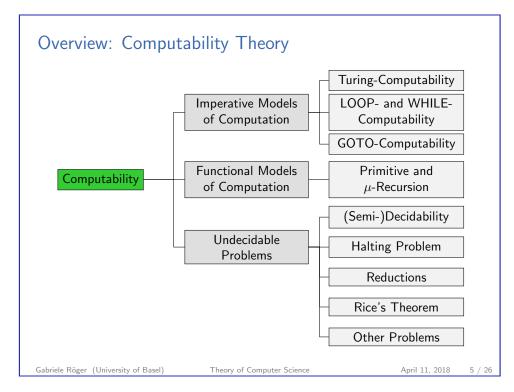
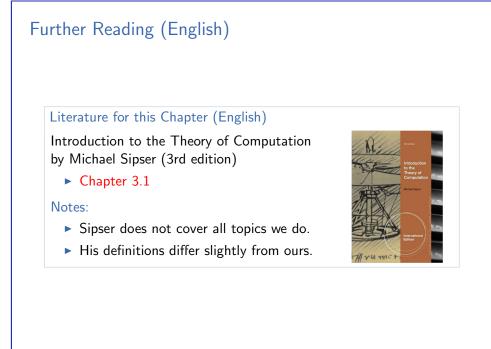
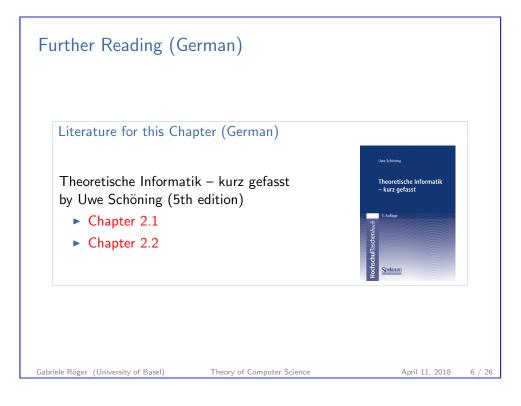


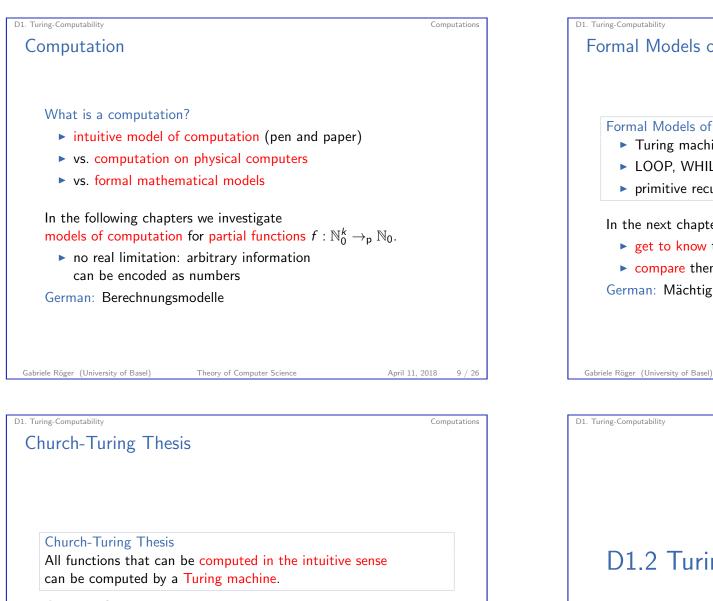
Theory of Compute April 11, 2018 — D1. Turing-			
D1.1 Computation	ons		
D1.2 Turing-Computable Functions			
D1.3 Examples			
D1.4 Summary			
Gabriele Röger (University of Basel)	Theory of Computer Science	April 11, 2018	2 / 26







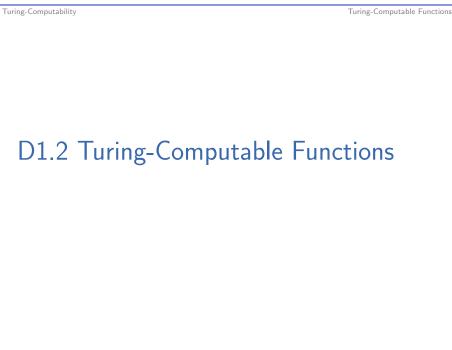




- German: Church-Turing-These
 - cannot be proven (why not?)
 - but we will collect evidence for it

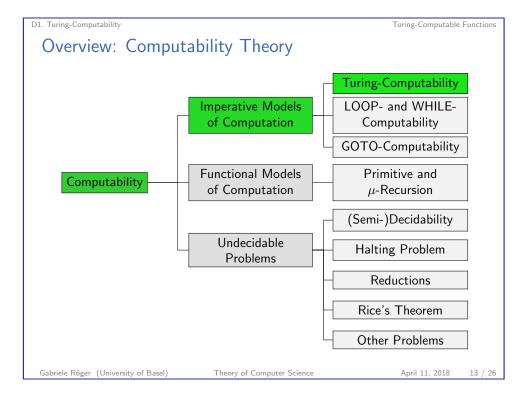
D1. Turing-Computability Computations Formal Models of Computation • Turing machines • LOOP, WHILE and GOTO programs • primitive recursive and μ-recursive functions In the next chapters we will • get to know these models and • compare them according to their power. German: Mächtigkeit

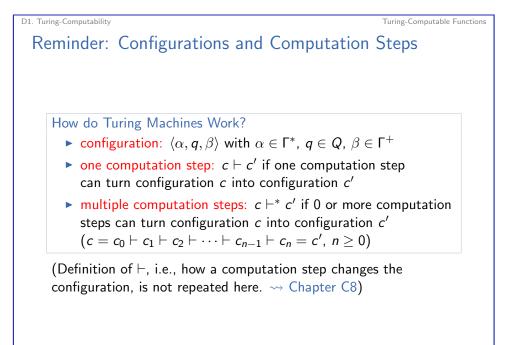
Theory of Computer Science

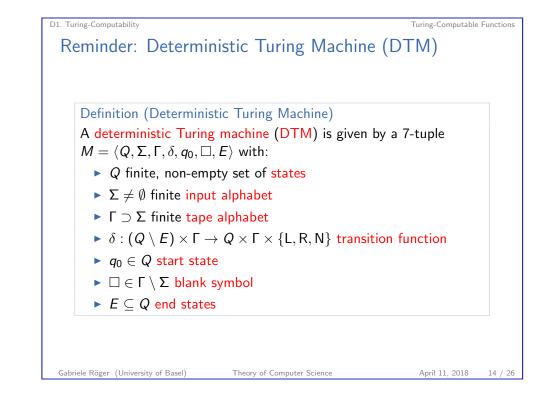


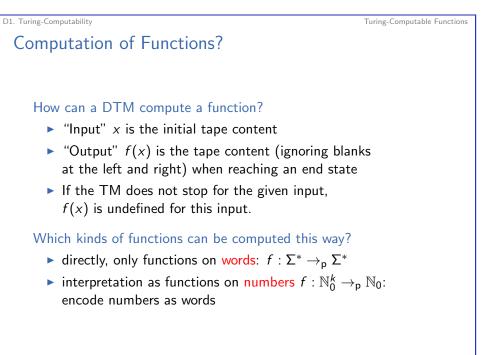
April 11, 2018

10 / 26









Turing-Computable Functions

Turing Machines: Computed Function

Definition (Function Computed by a Turing Machine) A DTM $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \Box, E \rangle$ computes the (partial) function $f : \Sigma^* \rightarrow_p \Sigma^*$ for which:

for all $x, y \in \Sigma^*$: f(x) = y iff $\langle \varepsilon, q_0, x \rangle \vdash^* \langle \Box \dots \Box, q_e, y \Box \dots \Box \rangle$

with $q_e \in E$. (special case: initial configuration $\langle \varepsilon, q_0, \Box \rangle$ if $x = \varepsilon$)

German: DTM berechnet f

▶ What happens if symbols from $\Gamma \setminus \Sigma$ (e.g., \Box) occur in *y*?

Theory of Computer Science

- What happens if the read-write head is not on the first symbol of y at the end?
- Is f uniquely defined by this definition? Why?

Gabriele Röger (University of Basel)

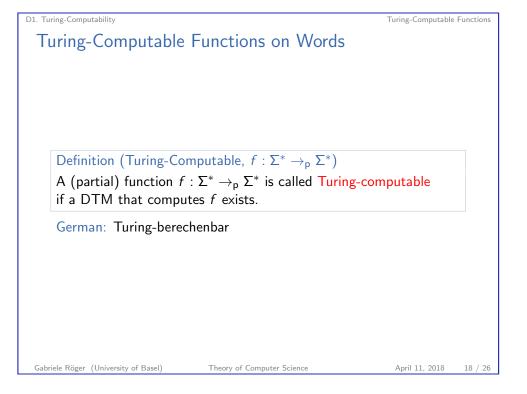
April 11, 2018

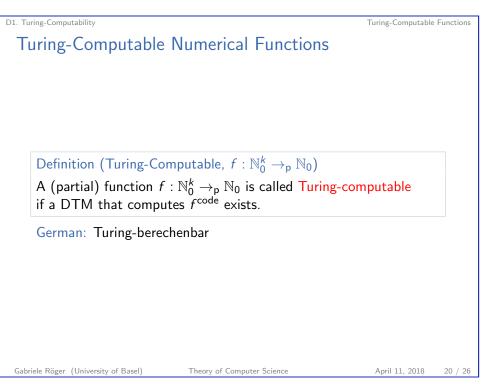
D1. Turing-Computability

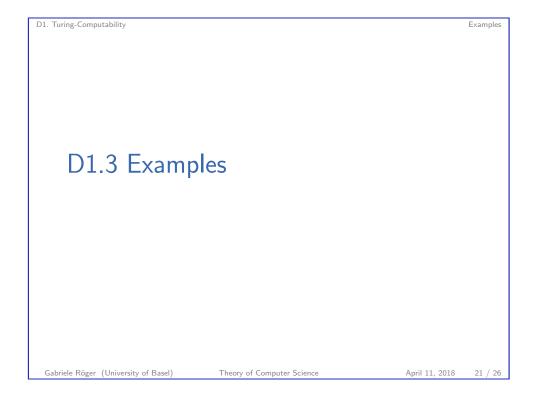
Turing-Computable Functions

17 / 26

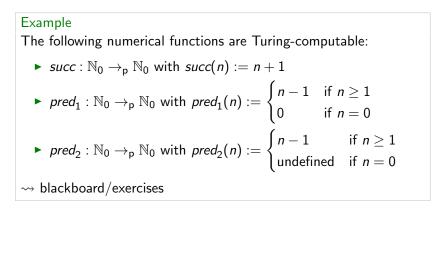
Definition (Encoded Function) Let $f : \mathbb{N}_0^k \to_p \mathbb{N}_0$ be a (partial) function. The encoded function f^{code} of f is the partial function $f^{code} : \Sigma^* \to_p \Sigma^*$ with $\Sigma = \{0, 1, \#\}$ and $f^{code}(w) = w'$ iff \blacktriangleright there are $n_1, \ldots, n_k, n' \in \mathbb{N}_0$ such that $\blacktriangleright f(n_1, \ldots, n_k) = n',$ $\bowtie w = bin(n_1)\# \ldots \# bin(n_k)$ and $\blacktriangleright w' = bin(n').$ Here $bin : \mathbb{N}_0 \to \{0, 1\}^*$ is the binary encoding (e. g., bin(5) = 101). German: kodierte Funktion Example: f(5, 2, 3) = 4 corresponds to $f^{code}(101\#10\#11) = 100.$







D1. Turing-Computability



D1. Turing-Computability

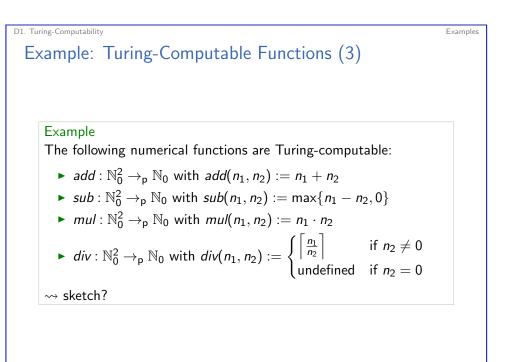
Example: Turing-Computable Functions (1)

Example

Let $\Sigma = \{a, b, \#\}$. The function $f : \Sigma^* \rightarrow_p \Sigma^*$ with f(w) = w # w for all $w \in \Sigma^*$ is Turing-computable. \rightsquigarrow blackboard

Gabriele Röger (University of Basel)

Theory of Computer Science April 11, 2018



Examples

22 / 26

Examples

