Theory of Computer Science
D1. Turing-Computability

Gabriele Roger

University of Basel

April 11, 2018

Gabriele Roger (University of Basel) Theory of Computer Science

April 11, 2018

1

/

/ 26

Theory of Computer Science
April 11, 2018 — D1. Turing-Computability

D1.1 Computations

D1.2 Turing-Computable Functions

D1.3 Examples

D1.4 Summary

Gabriele Roger (University of Basel) Theory of Computer Science

April 11, 2018

2/

26

Overview: Course

contents of this course:

> logic v/
> How can knowledge be represented?
How can reasoning be automated?

» automata theory and formal languages v/
> What is a computation?

» computability theory
> What can be computed at all?

» complexity theory
> What can be computed efficiently?

Gabriele Roger (University of Basel) Theory of Computer Science

April 11, 2018

3/

Main Question

Main question in this part of the course:

What can be computed
by a computer?

Gabriele Roger (University of Basel) Theory of Computer Science

April 11, 2018

4/

Overview: Computability Theory

Turing-Computability ‘

Imperative Models
of Computation

LOOP- and WHILE-
Computability

GOTO-Computability ‘

Functional Models

_ of Computation

Primitive and
u-Recursion

Undecidable
Problems

(Semi-)Decidability ‘

Halting Problem ‘

Reductions |

Rice's Theorem |

_{
_{
_{
_{
_{

Other Problems |

Further Reading (German)

Literature for this Chapter (German)

Theoretische Informatik — kurz gefasst
by Uwe Schoning (5th edition)

» Chapter 2.1
» Chapter 2.2

Gabriele Roger (University of Basel) Theory of Computer Science

Theoretische Informatik
- kurz gefasst

B
=
3

=
2

=
S B
=
S
a

4
S
-3

=

April 11, 2018

/26

Gabriele Roger (University of Basel) Theory of Computer Science April 11, 2018 5 /26
Further Reading (English)
Literature for this Chapter (English)
Introduction to the Theory of Computation
by Michael Sipser (3rd edition)
» Chapter 3.1
Notes:
» Sipser does not cover all topics we do.
» His definitions differ slightly from ours.
Gabriele Roger (University of Basel) Theory of Computer Science April 11, 2018 7 /26

D1. Turing-Computability

D1.1 Computations

Gabriele Roger (University of Basel) Theory of Computer Science

Computations

April 11, 2018

8/

26

D1. Turing-Computability Computations

Computation

What is a computation?
» intuitive model of computation (pen and paper)
> vs. computation on physical computers

» vs. formal mathematical models

In the following chapters we investigate
models of computation for partial functions f : N’g —p No.

» no real limitation: arbitrary information
can be encoded as numbers

German: Berechnungsmodelle

Gabriele Roger (University of Basel) Theory of Computer Science April 11, 2018 9 /26

D1. Turing-Computability Computations

Formal Models of Computation

Formal Models of Computation
» Turing machines

» LOOP, WHILE and GOTO programs

> primitive recursive and p-recursive functions

In the next chapters we will
> get to know these models and
> compare them according to their power.

German: Machtigkeit

Gabriele Roger (University of Basel) Theory of Computer Science April 11, 2018 10 / 26

D1. Turing-Computability Computations

Church-Turing Thesis

Church-Turing Thesis
All functions that can be computed in the intuitive sense
can be computed by a Turing machine.

German: Church-Turing-These

» cannot be proven (why not?)

» but we will collect evidence for it

Gabriele Roger (University of Basel) Theory of Computer Science April 11, 2018 11 /26

D1. Turing-Computability Turing-Computable Functions

D1.2 Turing-Computable Functions

Gabriele Roger (University of Basel) Theory of Computer Science April 11, 2018 12 / 26

D1. Turing-Computability Turing-Computable Functions

Overview: Computability Theory

LOOP- and WHILE-
Computability

GOTO-Computability ‘

Primitive and
u-Recursion

_ Functional Models
of Computation

—{ (Semi-)Decidability ‘
o~ Ugfsglig;ile ——{ Halting Problem ‘
—{ Reductions |
—{ Rice's Theorem |
—{ Other Problems |
Gabriele Réger (University of Basel) Theory of Computer Science April 11, 2018 13/ 26

D1. Turing-Computability

Reminder: Deterministic Turing Machine (DTM)

Definition (Deterministic Turing Machine)
A deterministic Turing machine (DTM) is given by a 7-tuple
=(Q,%,l,d,q0,0, E) with:
> @ finite, non-empty set of states
» Y = () finite input alphabet
» [D X finite tape alphabet
0:(Q\E)xT — QxT x{L,R,N} transition function
> qo € Q start state
O e '\ X blank symbol
E C Q end states

v

v

v

Gabriele Roger (University of Basel)

Turing-Computable Functions

Theory of Computer Science April 11, 2018 14 / 26

D1. Turing-Computability Turing-Computable Functions

Reminder: Configurations and Computation Steps

How do Turing Machines Work?
» configuration: (o, q,B) witha el*, qe Q, Bel™
» one computation step: ¢ F ¢’ if one computation step
can turn configuration c into configuration ¢’
» multiple computation steps: ¢ F* ¢’ if 0 or more computation

steps can turn configuration c¢ into configuration ¢’
(c=cwtatatr --FeakFag=c n>0)

(Definition of I, i.e., how a computation step changes the
configuration, is not repeated here. ~~ Chapter C8)

Gabriele Roger (University of Basel) Theory of Computer Science April 11, 2018 15 / 26

D1. Turing-Computability

Computation of Functions?

How can a DTM compute a function?
> “Input” x is the initial tape content

» “Output” f(x) is the tape content (ignoring blanks
at the left and right) when reaching an end state

> If the TM does not stop for the given input,
f(x) is undefined for this input.

Which kinds of functions can be computed this way?
» directly, only functions on words: f:¥* —, ¥*

> interpretation as functions on numbers f : Né‘ —p No:
encode numbers as words

Gabriele Réger (University of Basel)

Theory of Computer Science April 11, 2018 16 /

Turing-Computable Functions

26

D1. Turing-Computability Turing-Computable Functions

Turing Machines: Computed Function

Definition (Function Computed by a Turing Machine)
ADTM M = (Q,X,T,d, qo,d, E) computes the (partial) function
f:¥X* —p X for which:

for all x,y € ¥*: f(x) =y iff (g,q0,x) F* (O...0O0, ge, yOI...O)
with ge € E. (special case: initial configuration (g, qo,) if x = ¢)
German: DTM berechnet f

» What happens if symbols from '\ ¥ (e.g., O) occur in y?

» What happens if the read-write head is not
on the first symbol of y at the end?

> Is f uniquely defined by this definition? Why?

Gabriele Roger (University of Basel) Theory of Computer Science April 11, 2018 17 / 26

D1. Turing-Computability Turing-Computable Functions

Turing-Computable Functions on Words

Definition (Turing-Computable, f : ©* —, ¥¥)
A (partial) function f : ¥* —, ¥* is called Turing-computable
if a DTM that computes f exists.

German: Turing-berechenbar

Gabriele Roger (University of Basel) Theory of Computer Science April 11, 2018 18 / 26

D1. Turing-Computability Turing-Computable Functions

Encoding Numbers as Words

Definition (Encoded Function)
Let f : N§ —, No be a (partial) function.
The encoded function £¢°9¢ of f is the partial function
feode . 7 0 ¥* with ¥ = {0, 1,#} and f%(w) = w' iff
» there are ny,...,n,, n" € Ng such that
> f(ny,...,ng)=n',
» w = bin(ny)#...#bin(ng) and
» w' = bin(n').
Here bin: Ng — {0, 1}* is the binary encoding
(e.g., bin(5) = 101).

German: kodierte Funktion
Example: £(5,2,3) = 4 corresponds to f°%¢(101#10#11) = 100.

Gabriele Roger (University of Basel) Theory of Computer Science April 11, 2018 19 / 26

D1. Turing-Computability Turing-Computable Functions

Turing-Computable Numerical Functions

Definition (Turing-Computable, f : N’a —p Nop)

A (partial) function f : N§ —, Ny is called Turing-computable
if a DTM that computes £<°% exists.

German: Turing-berechenbar

Gabriele Roger (University of Basel) Theory of Computer Science April 11, 2018 20 / 26

D1. Turing-Computability Examples

D1.3 Examples

Gabriele Roger (University of Basel) Theory of Computer Science April 11, 2018 21 / 26

D1. Turing-Computability

Example: Turing-Computable Functions (1)

Example

Let ¥ = {a, b, #}.

The function f : ¥* —, ¥* with f(w) = w#w for all w € *
is Turing-computable.

~~ blackboard

Examples

D1. Turing-Computability Examples

Example: Turing-Computable Functions (2)

Example
The following numerical functions are Turing-computable:
» succ: Ng —p Ng with succ(n) :=n+1
-1 ifn>1
» pred; : Ng —, No with pred;(n) := " I h=
0 ifn=20

n—1 if n>1
» pred, : Ng —, Ng with pred,(n) := -
predz 07rp 0 preca(n) {undefined ifn=0

~~ blackboard/exercises

Gabriele Roger (University of Basel) Theory of Computer Science April 11, 2018 23 / 26

Gabriele Roger (University of Basel) Theory of Computer Science April 11, 2018 22 /26
D1. Turing-Computability Examples
Example: Turing-Computable Functions (3)
Example
The following numerical functions are Turing-computable:
> add: N% —p No with add(n1, np) := n1 + ny
» sub: N2 —, Ng with sub(n1, np) := max{ny — np,0}
> mul: N% —p No with mul(ny, n2) == ny - no
o if ny #0
» div: N3 —, Ng with div(ny,) := {”2 7
undefined if n, =0
~> sketch?
Gabriele Roger (University of Basel) Theory of Computer Science April 11, 2018 24 /26

D1. Turing-Computability

D1.4 Summary

Gabriele Roger (University of Basel) Theory of Computer Science

April 11, 2018

Summary

25 /

D1. Turing-Computability Summary

Summary

> main question: what can a computer compute?
> approach: investigate formal models of computation
> first: deterministic Turing machines

» Turing-computable function £ : >* —, > *:
there is a DTM that transforms every input w € &*
into the output f(w) (undefined if DTM does not stop
or stops in invalid configuration)

» Turing-computable function f : N’é —p No:
ditto; numbers encoded in binary and separated by #

Gabriele Roger (University of Basel) Theory of Computer Science April 11, 2018 26 / 26

	Computations
	Turing-Computable Functions
	Examples
	Summary

