

A3. Proof Techniques A3.1 Introduction

Aber and a set of the se

A3. Proof Techniques

Mathematical Statements

Mathematical Statement

A mathematical statement consists of a set of preconditions and a set of conclusions.

The statement is true if the conclusions are true whenever the preconditions are true.

German: mathematische Aussage, Voraussetzung, Folgerung/Konklusion, wahr

Notes:

- set of preconditions is sometimes empty
- ► often, "assumptions" is used instead of "preconditions"; slightly unfortunate because "assumption" is also used with another meaning (~> cf. indirect proofs)

Gabriele Röger (University of Basel)

Introduction

Gabriele Röger (University of Basel)

Examples of Mathematical Statements

Examples (some true, some false):

- "Let $p \in \mathbb{N}_0$ be a prime number. Then p is odd."
- ▶ "There exists an even prime number."
- "Let $p \in \mathbb{N}_0$ with p > 3 be a prime number. Then p is odd."
- "All prime numbers p > 3 are odd."
- "For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ "
- "The equation $a^k + b^k = c^k$ has infinitely many solutions with $a, b, c, k \in \mathbb{N}_1$ and k > 2."
- "The equation $a^k + b^k = c^k$ has no solutions with $a, b, c, k \in \mathbb{N}_1$ and k > 3."

Which ones are true, which ones are false?

Gabriele Röger (University of Basel)

Theory of Computer Science February 28, 2018

A3. Proof Techniques

Disproofs

▶ This requires deriving, in a sequence of proof steps, the opposite (negation) of the conclusion.

German: Widerlegung

- Formally, disproofs are proofs of modified ("negated") statements.
- ▶ Be careful about how to negate a statement!

Introduction

5 / 38

Gabriele Röger (University of Basel)

A3.2 Direct Proof

Gabriele Röger (University of Basel)

Theory of Computer Science

February 28, 2018

13 / 38

Direct Proof

A3. Proof Techniques

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies $x \in (A \cap B) \cup (A \cap C)$ ("only-if" part, " \Rightarrow " part, " \subseteq " part):

Let $x \in A \cap (B \cup C)$. Then $x \in A$ and $x \in B \cup C$.

If $x \in B$ then, because $x \in A$ is true, $x \in A \cap B$ must be true.

Otherwise, because $x \in B \cup C$ we know that $x \in C$ and thus with $x \in A$, that $x \in A \cap C$.

In both cases $x \in A \cap B$ or $x \in A \cap C$, and we conclude $x \in (A \cap B) \cup (A \cap C)$.

German: Hin-Richtung

. . .

Gabriele Röger (University of Basel)

Theory of Computer Science

February 28, 2018 14 / 38

irect Proof: Example	
Theorem (distributivity) For all sets $A = B = C$: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
$[101 \text{ an sets } A, D, C. A \cap (D \cup C) = (A \cap D) \cup (A \cap C).$	
Proof (continued). "if" part, " \Leftarrow " part, \supseteq part: we must show that $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A \cap (B \cup C)$.	
Let $x \in (A \cap B) \cup (A \cap C)$.	
If $x \in A \cap B$ then $x \in A$ and $x \in B$. The latter implies $x \in B \cup C$ and hence $x \in A \cap (B \cup C)$.	
If $x \notin A \cap B$ we know $x \in A \cap C$ due to $x \in (A \cap B) \cup (A \cap B)$ This (analogously) implies $x \in A$ and $x \in C$, and hence $x \in A$ and thus $x \in A \cap (B \cup C)$.	∩ C). ∃ B ∪ C
In both cases we conclude $x \in A \cap (B \cup C)$.	

Gabriele Röger (University of Basel)

Theory of Computer Science

Indirect Proof

21 / 38

Contraposition

February 28, 2018

Indirect Proof: Example

Theorem

There are infinitely many prime numbers.

Proof.

Assumption: There are only finitely many prime numbers. Let $P = \{p_1, \ldots, p_n\}$ be the set of all prime numbers. Define $m = p_1 \cdot \ldots \cdot p_n + 1$. Since $m \ge 2$, it must have a prime factor. Let p be such a prime factor. Since p is a prime number, p has to be in P. The number m is not divisible without remainder by any of the numbers in P. Hence p is no factor of m. \rightsquigarrow Contradiction

Theory of Computer Science

Gabriele Röger (University of Basel)

A3. Proof Techniques

Contraposition

(Proof by) Contraposition Prove "If *A*, then *B*" by proving "If not *B*, then not *A*."

German: (Beweis durch) Kontraposition

Examples:

- Prove "For all n ∈ N₀: if n² is odd, then n is odd" by proving "For all n ∈ N₀, if n is even, then n² is even."
- Prove "For all n ∈ N₀: if n is not a square number, then √n is irrational" by proving "For all n ∈ N₀: if √n is rational, then n is a square number."

A3. Proof Techni	ques		Con	traposition
A3	.4 Contra	position		
Gabriele Röger	(University of Basel)	Theory of Computer Science	February 28, 2018	22 / 38

Mathematical Induction

25 / 38

Mathematical Induction

Mathematical Induction

Proof of a statement for all natural numbers n with $n \ge m$

- **basis**: proof of the statement for n = m
- ► induction hypothesis (IH): suppose that statement is true for all k with m ≤ k ≤ n
- inductive step: proof of the statement for n+1 using the induction hypothesis

German: vollständige Induktion, Induktionsanfang, Induktionsvoraussetzung, Induktionsschritt

Gabriele Röger (University of Basel)

Theory of Computer Science February 28, 2018

A3. Proof Techniques

Mathematical Induction

Mathematical Induction: Example II

Theorem

Every natural number $n \ge 2$ can be written as a product of prime numbers, i. e. $n = p_1 \cdot p_2 \cdot \ldots \cdot p_m$ with prime numbers p_1, \ldots, p_m .

Proof.

Mathematical Induction over *n*:

basis n = 2: trivially satisfied, since 2 is prime

- IH: Every natural number k with $2 \le k \le n$
 - can be written as a product of prime numbers.

A3. Proof Techniques

Mathematical Induction: Example I

Theorem

For all $n \in \mathbb{N}_0$ with $n \ge 1$: $\sum_{k=1}^n (2k-1) = n^2$

Proof.

Mathematical induction over *n*:

basis n = 1: $\sum_{k=1}^{1} (2k - 1) = 2 - 1 = 1 = 1^2$ IH: $\sum_{k=1}^{m} (2k - 1) = m^2$ for all $1 \le m \le n$ inductive step $n \to n + 1$:

$$\sum_{k=1}^{n+1} (2k-1) = \left(\sum_{k=1}^{n} (2k-1)\right) + 2(n+1) - 1$$
$$\stackrel{\text{IH}}{=} n^2 + 2(n+1) - 1$$
$$= n^2 + 2n + 1 = (n+1)^2$$

Theory of Computer Science

February 28, 2018 26 / 38

Mathematical Induction

A3. Proof Techniques

Mathematical Induction: Example II

Theorem

Every natural number $n \ge 2$ can be written as a product of prime numbers, i. e. $n = p_1 \cdot p_2 \cdot \ldots \cdot p_m$ with prime numbers p_1, \ldots, p_m .

Proof (continued).

inductive step $n \rightarrow n + 1$:

- Case 1: n + 1 is a prime number \rightsquigarrow trivial
- Case 2: n + 1 is not a prime number. There are natural numbers $2 \le q, r \le n$ with $n + 1 = q \cdot r$. Using IH shows that there are prime numbers q_1, \ldots, q_s with $q = q_1 \cdot \ldots \cdot q_s$ and r_1, \ldots, r_t with $r = r_1 \cdot \ldots \cdot r_t$.

Together this means $n+1 = q_1 \cdot \ldots \cdot q_s \cdot r_1 \cdot \ldots \cdot r_t$.

Theory of Computer Science

. . .

A3.6 Structural Induction

Gabriele Röger (University of Basel)

Theory of Computer Science

February 28, 2018

29 / 38

Structural Induction

A3. Proof Techniques

Inductive Definition of a Set

Inductive Definition

A set M can be defined inductively by specifying

- ▶ basic elements that are contained in M
- construction rules of the form "Given some elements of M, another element of Mcan be constructed like this.'

German: induktive Definition, Basiselemente, Konstruktionsregeln

Inductively Defined Sets: Examples

Structural Induction

A3. Proof Techniques

Summary

- A proof is based on axioms and previously proven statements.
- Individual proof steps must be obvious derivations.
- direct proof: sequence of derivations or rewriting
- indirect proof: refute the negated statement
- contraposition: prove " $A \Rightarrow B$ " as "not $B \Rightarrow \text{not } A$ "
- mathematical induction: prove statement for a starting point and show that it always carries over to next number
- structural induction: generalization of mathematical induction to arbitrary recursive structures

Gabriele Röger (University of Basel)

Theory of Computer Science

February 28, 2018 37 / 38

Summarv

A3. Proof Techniques

Summary