Foundations of Artificial Intelligence

3. Introduction: Rational Agents

Malte Helmert

University of Basel

March 5, 2018

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 5, 2018 1 / 19

, , ,

Introduction: Overview

Chapter overview: introduction

- ▶ 1. What is Artificial Intelligence?
- ▶ 2. Al Past and Present
- ▶ 3. Rational Agents
- ▶ 4. Environments and Problem Solving Methods

Foundations of Artificial Intelligence

March 5, 2018 — 3. Introduction: Rational Agents

3.1 Agents

3.2 Rationality

3.3 Summary

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 5, 2018

10 2 / 1

3. Introduction: Rational Agents

Agen

3.1 Agents

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 5, 2018 3 /

M. Helmert (University of Basel) Foundations of

Foundations of Artificial Intelligence

Agents

Heterogeneous Application Areas

Al systems are used for very different tasks:

- ► controlling manufacturing plants
- detecting spam emails
- ▶ intra-logistic systems in warehouses
- giving shopping advice on the Internet
- playing board games
- ▶ finding faults in logic circuits

How do we capture this diversity in a systematic framework emphasizing commonalities and differences?

common metaphor: rational agents and their environments

German: rationale Agenten, Umgebungen

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 5, 2018

March 5, 2018

Agents

agent functions map sequences of observations to actions:

percepts

actions

environment

$$f: \mathcal{P}^+ \to \mathcal{A}$$

sensors

▶ agent program: runs on physical architecture and computes f

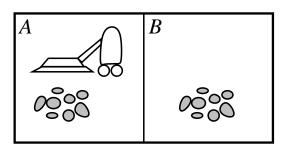
Examples: human, robot, web crawler, thermostat, OS scheduler

German: Agenten, Agentenfunktion, Wahrnehmung, Aktion

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 5, 2018


3. Introduction: Rational Agents

Introducing: an Agent

3. Introduction: Rational Agents

Vacuum Domain

- observations: location and cleanness of current room: $\langle a, clean \rangle$, $\langle a, dirty \rangle$, $\langle b, clean \rangle$, $\langle b, dirty \rangle$
- ► actions: left, right, suck, wait

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

3. Introduction: Rational Agents

Vacuum Agent

a possible agent function:

observation sequence	action
$\langle a,clean angle$	right
$\langle a,dirty angle$	suck
$\langle b, clean \rangle$	left
⟨b, dirty⟩	suck
$\langle a, clean \rangle$, $\langle b, clean \rangle$	left
$\langle a, clean \rangle, \langle b, dirty \rangle$	suck

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 5, 2018

3. Introduction: Rational Agents

Reflexive Agents

Reflexive agents compute next action only based on last observation in sequence:

- very simple model
- very restricted
- corresponds to Mealy automaton (a kind of DFA) with only 1 state
- ► practical examples?

German: reflexiver Agent

Example (A Reflexive Vacuum Agent)

def reflex-vacuum-agent(location, status):

if status = dirty: **return** suck **else if** *location* = a: **return** *right* **else if** *location* = b: **return** *left*

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 5, 2018

3. Introduction: Rational Agents

Evaluating Agent Functions

What is the right agent function?

3. Introduction: Rational Agents

3.2 Rationality

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 5, 2018

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

3. Introduction: Rational Agents

Rationality

Rational Behavior

Evaluate behavior of agents with performance measure (related terms: utility, cost).

perfect rationality:

- ► always select an action maximizing
- expected value of future performance
- given available information (observations so far)

German: Performance-Mass, Nutzen, Kosten, perfekte Rationalität

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 5, 2018

13 / 19

3. Introduction: Rational Agents

Question: Is the reflexive vacuum agent of the example perfectly rational?

Is Our Agent Perfectly Rational?

depends on performance measure and environment!

- ▶ Do actions reliably have the desired effect?
- ▶ Do we know the initial situation?
- ► Can new dirt be produced while the agent is acting?

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 5, 2018

3. Introduction: Rational Agents

Rational Vacuum Agent

Example (Vacuum Agent)

performance measure:

- ▶ +100 units for each cleaned cell
- ▶ -10 units for each *suck* action
- ightharpoonup -1 units for each *left/right* action

environment:

- ► actions and observations reliable
- ▶ world only changes through actions of the agent
- ▶ all initial situations equally probable

How should a perfect agent behave?

3. Introduction: Rational Agents

Rationality: Discussion

- ▶ perfect rationality ≠ omniscience
 - incomplete information (due to limited observations) reduces achievable utility
- ▶ perfect rationality ≠ perfect prediction of future
 - uncertain behavior of environment (e.g., stochastic action effects) reduces achievable utility
- ▶ perfect rationality is rarely achievable
 - ▶ limited computational power ~> bounded rationality

German: begrenzte Rationalität

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 5, 2018

16 / 19

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

3. Introduction: Rational Agents Summary

3.3 Summary

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 5, 2018

c

17 / 19

3. Introduction: Rational Agents
Summary (2)

rational agents:

- try to maximize performance measure (utility)
- perfect rationality: achieve maximal utility in expectation given available information
- ▶ for "interesting" problems rarely achievable
 - → bounded rationality

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 5, 2018

3. Introduction: Rational Agents

Summary (1)

common metaphor for Al systems: rational agents

agent interacts with environment:

- > sensors perceive observations about state of the environment
- actuators perform actions modifying the environment
- formally: agent function maps observation sequences to actions
- ► reflexive agent: agent function only based on last observation

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 5, 2018 1

18 / 19