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Überblick: Vorlesung

Vorlesungsteile

I. Logik X

II. Automatentheorie und formale Sprachen X

III. Berechenbarkeitstheorie

IV. Komplexitätstheorie
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Leitfrage

Leitfrage in diesem Vorlesungsteil:

Was können Computer berechnen?
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Überblick: Berechenbarkeitstheorie

III. Berechenbarkeitstheorie

12. Turing-Berechenbarkeit

13. LOOP-, WHILE- und GOTO-Berechenbarkeit

14. primitive Rekursion und µ-Rekursion

15. Ackermannfunktion

16. Entscheidbarkeit, Reduktionen, Halteproblem

17. Postsches Korrespondenzproblem

Unentscheidbare Grammatik-Probleme

Gödelscher Satz und diophantische Gleichungen
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Nachlesen

Literatur zu diesem Vorlesungskapitel

Theoretische Informatik - kurz gefasst
von Uwe Schöning (5. Auflage)

Kapitel 2.1

Kapitel 2.2
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Berechnungen
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Berechnung

Was ist eine Berechnung?

intuitives Berechenbarkeitsmodell (Papier und Bleistift)

vs. Berechnung auf physikalischen Computern

vs. formale mathematische Modelle

Wir untersuchen in den folgenden Kapiteln
Berechnungsmodelle für partielle Funktionen f : Nk

0 → N0.

keine echte Einschränkung: beliebige Informationen
können als Zahlen kodiert werden
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Formale Berechnungsmodelle

Formale Berechnungsmodelle

Turingmaschinen

LOOP-, WHILE-, GOTO-Programme

primitiv rekursive Funktionen, µ-rekursive Funktionen

In den nächsten Vorlesungen werden wir

diese Berechnungsmodelle kennen lernen und

hinsichtlich ihrer Mächtigkeit miteinander vergleichen.
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Church-Turing-These

Church-Turing-These

Alle im intuitiven Sinne berechenbaren Funktionen
können mit Turingmaschinen berechnet werden.

kann man nicht beweisen (Warum nicht?)

aber wir werden Evidenz dafür sammeln
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Wiederholung: Turingmaschinen
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Formale Berechnungsmodelle

Formale Berechnungsmodelle: Turingmaschinen

Turingmaschinen

LOOP-, WHILE-, GOTO-Programme

primitiv rekursive Funktionen, µ-rekursive Funktionen
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Wiederholung: deterministische Turingmaschine (DTM)

Definition (Deterministische Turingmaschine)

Eine deterministische Turingmaschine (DTM) ist gegeben durch
ein 7-Tupel M = 〈Z ,Σ, Γ, δ, z0,�,E 〉 mit:

Z endliche, nicht-leere Menge von Zuständen

Σ 6= ∅ endliches Eingabealphabet

Γ ⊃ Σ endliches Bandalphabet

δ : (Z \ E )× Γ→ Z × Γ× {L,R,N} Übergangsfunktion

z0 ∈ Z Startzustand

� ∈ Γ \ Σ Blank-Zeichen

E ⊆ Z Endzustände
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Wiederholung: Konfigurationen und Berechnungsschritte

Wie arbeiten Turingmaschinen?

Konfiguration: αzβ mit α ∈ Γ∗, z ∈ Z , β ∈ Γ+

ein Rechenschritt: c ` c ′, wenn aus Konfiguration c
in einem Berechnungsschritt Konfiguration c ′ entsteht

mehrere Rechenschritte: c `∗ c ′, wenn aus Konfiguration c
in 0 oder mehr Schritten Konfiguration c ′ entsteht
(c = c0 ` c1 ` c2 ` · · · ` cn−1 ` cn = c ′, n ≥ 0)

(Definition von `, also wie ein Berechnungsschritt die aktuelle
Konfiguration ändert, wird hier nicht wiederholt.  Kapitel 11.)
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Turing-berechenbare Funktionen
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Berechnung von Funktionen?

Wie kann eine DTM eine Funktion berechnen?

“Eingabe” x ist anfänglicher Bandinhalt

“Ausgabe” f (x) ist Bandinhalt (ohne Blanks am Rand)
beim Erreichen eines Endzustands

Hält die TM für die gegebene Eingabe nicht an,
ist f (x) an dieser Stelle undefiniert.

Was für Funktionen werden so berechnet?

zunächst einmal Funktionen von Wörtern: f : Σ∗ → Σ∗

Interpretation als Funktionen von Zahlen f : Nk
0 → N0:

kodiere Zahlen als Wörter
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Turingmaschinen: berechnete Funktion

Definition (von einer Turingmaschine berechnete Funktion)

Eine DTM mit Eingabealphabet Σ berechnet
die (partielle) Funktion f : Σ∗ → Σ∗, für die gilt:

für alle x , y ∈ Σ∗: f (x) = y gdw. z0x `∗ � . . .�zey� . . .�

mit ze ∈ E . (Spezialfall: z0� statt z0x wenn x = ε)

Was passiert, wenn Zeichen aus Γ \ Σ (z. B. �) in y stehen?

Was passiert, wenn der Lesekopf am Ende nicht auf dem
ersten Zeichen von y steht?

Ist f durch die Definition eindeutig definiert? Warum?



Berechnungen Wiederholung: Turingmaschinen Turing-berechenbare Funktionen Beispiele Zusammenfassung

Turing-berechenbare Funktionen auf Wörtern

Definition (Turing-berechenbar, f : Σ∗ → Σ∗)

Eine (partielle) Funktion f : Σ∗ → Σ∗ heisst Turing-berechenbar,
wenn eine DTM existiert, die f berechnet.
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Kodierung von Zahlen als Wörter

Definition (kodierte Funktion)

Sei f : Nk
0 → N0 eine (partielle) Funktion.

Die kodierte Funktion f code zu f ist die partielle Funktion
f code : Σ∗ → Σ∗ mit Σ = {0, 1, #} und f code(w) = w ′ gdw.

es gibt n1, . . . , nk , n
′ ∈ N0, so dass

f (n1, . . . , nk) = n′,

w = bin(n1)# . . . #bin(nk) und

w ′ = bin(n′).

Hierbei bezeichnet bin : N0 → {0, 1}∗ die Binärkodierung (z.B.
bin(5) = 101).

Beispiel: f (5, 2, 3) = 4 entspricht f code(101#10#11) = 100.
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Turing-berechenbare numerische Funktionen

Definition (Turing-berechenbar, f : Nk
0 → N0)

Eine (partielle) Funktionen f : Nk
0 → N0 heisst Turing-berechenbar,

wenn eine DTM existiert, die f code berechnet.
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Beispiele
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Beispiel: Turing-berechenbare Funktionen (1)

Beispiel

Sei Σ = {a, b, #}.
Die Funktion f : Σ∗ → Σ∗ mit f (w) = w#w für alle w ∈ Σ∗

ist Turing-berechenbar.

 Tafel
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Beispiel: Turing-berechenbare Funktionen (2)

Beispiel

Die folgenden numerischen Funktionen sind Turing-berechenbar:

succ : N0 → N0 mit succ(n) := n + 1

pred1 : N0 → N0 mit pred1(n) :=

{
n − 1 falls n ≥ 1

0 falls n = 0

pred2 : N0 → N0 mit pred2(n) :=

{
n − 1 falls n ≥ 1

undefined falls n = 0

 Tafel/Hausaufgaben
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Beispiel: Turing-berechenbare Funktionen (3)

Beispiel

Die folgenden numerischen Funktionen sind Turing-berechenbar:

add : N2
0 → N0 mit add(n1, n2) := n1 + n2

sub : N2
0 → N0 mit sub(n1, n2) := max{n1 − n2, 0}

mul : N2
0 → N0 mit mul(n1, n2) := n1 · n2

div : N2
0 → N0 mit div(n1, n2) :=

{⌈
n1
n2

⌉
falls n2 6= 0

undefined falls n2 = 0

 Skizze?
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Zusammenfassung
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Zusammenfassung

Fragestellung: Was können Computer berechnen?

Ansatz: untersuche formale Berechnungsmodelle

zunächst: deterministische Turingmaschinen

Turing-berechenbare Funktion f : Σ∗ → Σ∗:
es gibt eine DTM, die auf jede

”
Eingabe“ w ∈ Σ∗

die
”
Ausgabe“ f (w) produziert (undefiniert, wenn DTM

nicht oder in ungültiger Konfiguration anhält)

Turing-berechenbare Funktion f : Nk
0 → N0:

genauso; Zahlen binär kodiert und durch # getrennt
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