Theorie der Informatik
12. Turing-Berechenbarkeit

Malte Helmert Gabriele Roger

Universitat Basel

9. April 2014

Uberblick: Vorlesung

Vorlesungsteile
l. Logik v/
[I. Automatentheorie und formale Sprachen v/

II1. Berechenbarkeitstheorie

IV. Komplexitatstheorie

Leitfrage in diesem Vorlesungsteil:

Was konnen Computer berechnen?

Uberblick: Berechenbarkeitstheorie

Il1. Berechenbarkeitstheorie

12. Turing-Berechenbarkeit
13. LOOP-, WHILE- und GOTO-Berechenbarkeit
14. primitive Rekursion und p-Rekursion
15. Ackermannfunktion
16. Entscheidbarkeit, Reduktionen, Halteproblem
17. Postsches Korrespondenzproblem
u heidl e i Probl
CodelscherS i i che_Clei

Nachlesen

Literatur zu diesem Vorlesungskapitel

TheoretISChe |nf0rmatlk - ku rz gefasst Theoretische Informatik
. ~ kurz gefasst
von Uwe Schéning (5. Auflage) :

o Kapitel 2.1
o Kapitel 2.2

B
c
51

=
2

E |
EN

=
S
a

44
S
-]

=

Berechnungen

Berechnungen
0e00

Berechnung

Was ist eine Berechnung?
@ intuitives Berechenbarkeitsmodell (Papier und Bleistift)
@ vs. Berechnung auf physikalischen Computern

@ vs. formale mathematische Modelle

Wir untersuchen in den folgenden Kapiteln
Berechnungsmodelle fiir partielle Funktionen f : Né — Np.

@ keine echte Einschrankung: beliebige Informationen
kénnen als Zahlen kodiert werden

Berechnungen
fe]e] Yol

Formale Berechnungsmodelle

Formale Berechnungsmodelle

@ Turingmaschinen
o LOOP-, WHILE-, GOTO-Programme

@ primitiv rekursive Funktionen, u-rekursive Funktionen

In den nidchsten Vorlesungen werden wir
o diese Berechnungsmodelle kennen lernen und

@ hinsichtlich ihrer Machtigkeit miteinander vergleichen.

Berechnungen
oooe

Church-Turing-These

Church-Turing-These

Alle im intuitiven Sinne berechenbaren Funktionen
kdnnen mit Turingmaschinen berechnet werden.

@ kann man nicht beweisen (Warum nicht?)

@ aber wir werden Evidenz dafiir sammeln

Wiederholung: Turingmasc hinen

@000

Wiederholung: Turingmaschinen

Wiederholung: Turingmaschinen
0®00

Formale Berechnungsmodelle

Formale Berechnungsmodelle: Turingmaschinen
@ Turingmaschinen
@ LOOP-, WHILE-, GOTO-Programme

@ primitiv rekursive Funktionen, pu-rekursive Funktionen

Wiederholung: Turingmaschinen
fe]eY 1]

Wiederholung: deterministische Turingmaschine (DTM)

Definition (Deterministische Turingmaschine)
Eine deterministische Turingmaschine (DTM) ist gegeben durch
ein 7-Tupel M = (Z, X, T, 6, z,00, E) mit:
@ Z endliche, nicht-leere Menge von Zustanden
@ Y # () endliches Eingabealphabet
o [D X endliches Bandalphabet
§:(Z\E)xT = ZxT x{L,R,N} Ubergangsfunktion
zp € Z Startzustand
O e I'\ X Blank-Zeichen
E C Z Endzustande

Wiederholung: Turingmaschinen

[eJele]]

Wiederholung: Konfigurationen und Berechnungsschritte

Wie arbeiten Turingmaschinen?
e Konfiguration: azB mitaelM*, ze Z, Belt
@ ein Rechenschritt: ¢ F ¢/, wenn aus Konfiguration ¢

in einem Berechnungsschritt Konfiguration ¢’ entsteht

@ mehrere Rechenschritte: ¢ H* ¢/, wenn aus Konfiguration ¢
in 0 oder mehr Schritten Konfiguration ¢’ entsteht
(c=awtatat---Fc1kecn=¢, n>0)

(Definition von F, also wie ein Berechnungsschritt die aktuelle
Konfiguration dndert, wird hier nicht wiederholt. ~~ Kapitel 11.)

Turing-berechenbare Funktionen

900000

Turing-berechenbare Funktionen

Turing-berechenbare Funktionen
0®0000

Berechnung von Funktionen?

Wie kann eine DTM eine Funktion berechnen?
e “Eingabe” x ist anfinglicher Bandinhalt
e “Ausgabe” f(x) ist Bandinhalt (ohne Blanks am Rand)
beim Erreichen eines Endzustands

e Halt die TM fiir die gegebene Eingabe nicht an,
ist f(x) an dieser Stelle undefiniert.

Was fiir Funktionen werden so berechnet?
@ zunichst einmal Funktionen von Woértern: f : &% — ¥
@ Interpretation als Funktionen von Zahlen f : Né — Np:
kodiere Zahlen als Worter

Turing-berechenbare Funktionen
00@000

Turingmaschinen: berechnete Funktion

Definition (von einer Turingmaschine berechnete Funktion)

Eine DTM mit Eingabealphabet ¥ berechnet
die (partielle) Funktion f : ©* — X*, fiir die gilt:

fir alle x,y € ¥*: f(x) =y gdw. zox F* O...OzeyO. .. O

mit ze € E. (Spezialfall: zp[J statt zpx wenn x = ¢)

@ Was passiert, wenn Zeichen aus '\ £ (z. B. O) in y stehen?

@ Was passiert, wenn der Lesekopf am Ende nicht auf dem
ersten Zeichen von y steht?

@ Ist f durch die Definition eindeutig definiert? Warum?

Turing-berechenbare Funktionen
000®00

Turing-berechenbare Funktionen auf Woértern

Definition (Turing-berechenbar, f : ¥* — ¥*)

Eine (partielle) Funktion f : ¥* — ¥* heisst Turing-berechenbar,
wenn eine DTM existiert, die f berechnet.

Turing-berechenbare Funktionen
[e]eleleY To)

Kodierung von Zahlen als Worter

Definition (kodierte Funktion)

Sei f : N§ — Ny eine (partielle) Funktion.
Die kodierte Funktion f<°9¢ zu f ist die partielle Funktion
feode - 3¢ ¥* mit ¥ = {0, 1, #} und % (w) = w' gdw.

@ es gibt ny,...,n,,n" € Ny, so dass

o f(n,...,ng)=n,

e w = bin(ny)#...#bin(ng) und

o w' = bin(n').
Hierbei bezeichnet bin : Ng — {0, 1}* die Binarkodierung (z.B.
bin(5) = 101).

Beispiel: f(5,2,3) = 4 entspricht f°4¢(101#10#11) = 100.

Turing-berechenbare Funktionen
00000e

Turing-berechenbare numerische Funktionen

Definition (Turing-berechenbar, f : Né — Nop)

Eine (partielle) Funktionen f : N§ — Ny heisst Turing-berechenbar,
wenn eine DTM existiert, die £<°9 berechnet.

Beispiele

Beispiele
0®00

Beispiel: Turing-berechenbare Funktionen (1)

Beispiel

Sei ¥ = {a,b, #}.
Die Funktion f : ©* — X* mit f(w) = wi#w fiir alle w € T*
ist Turing-berechenbar.

~~ Tafel

vare Funktionen Beispiele
fele] o)

Beispiel: Turing-berechenbare Funktionen (2)

Die folgenden numerischen Funktionen sind Turing-berechenbar:

@ succ: Nog — Ny mit succ(n) :==n+1
n—1 fallsn>1

o pred; : Ng — Ng mit pred;(n) :=
precy = o o mit pred(n) {0 falls n=0
n—1 falls n >1

@ pred, : Ng — Ng mit pred,(n) :=
precz - o o mit predy(n) {undefined falls n=20

~~ Tafel/Hausaufgaben

nungen olung g en erec re Funktionen Beispiele
oooe

Beispiel: Turing-berechenbare Funktionen (3)

Die folgenden numerischen Funktionen sind Turing-berechenbar:

@ add: N% — No mit add(ny, np) := n1 + ny
o sub: N3 — Ny mit sub(n1, np) := max{n; — np,0}
o mul: N3 — No mit mul(ny, n2) := ny - m
o falls np # 0
o div: N3 — Ny mit div(nyg, n) := {”2-‘ 27
undefined falls n, =0

~ Skizze?

Zusammenfassung

Zusammenfassung
oe

Zusammenfassung

Fragestellung: Was kénnen Computer berechnen?
Ansatz: untersuche formale Berechnungsmodelle
zunachst: deterministische Turingmaschinen

Turing-berechenbare Funktion f : 2% — ¥*:

es gibt eine DTM, die auf jede ,,Eingabe” w € ¥*

die ,,Ausgabe” f(w) produziert (undefiniert, wenn DTM
nicht oder in ungiiltiger Konfiguration anhalt)

@ Turing-berechenbare Funktion f : N'g — No:
genauso; Zahlen binar kodiert und durch # getrennt

	Berechnungen
	Wiederholung: Turingmaschinen
	Turing-berechenbare Funktionen
	Beispiele
	Zusammenfassung

