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Kellerautomaten Zusammenfassung

Limitierung von endlichen Automaten

z0 z1 z2
0

0, 1

0

Sprache L ist regulär
⇔ es gibt einen endlichen Automaten, der L akzeptiert

Welche Information kann ein endlicher Automat über das
bereits gelesene Teilwort

”
speichern“?

Für L = {a1a2 . . . anan . . . a2a1 | n > 0, ai ∈ {0, 1}} wäre
unendlicher Speicher notwendig.

Daher: Erweiterung von Automatenmodell um Speicher
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Keller

Ein Keller (oder Stapel, engl. Stack) ist eine Datenstruktur nach
dem Last-In-First-Out-Prinzip (LIFO) mit folgenden Operationen:

push: Legt ein Objekt oben auf
den Stapel

pop: Nimmt das oberste Objekt
vom Stapel

peek: Liefert das oberste Objekt
zurück ohne es zu entfernen

PopPush



Kellerautomaten Zusammenfassung

Kellerautomat: anschaulich

Kellerzugriff
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Kellerautomat: Definition

Definition (Kellerautomat = PDA)

Ein Kellerautomat (push-down automaton, PDA)
ist ein 6-Tupel M = (Z ,Σ, Γ, δ, z0,#) mit

Z endliche Menge der Zustände,

Σ das Eingabealphabet,

Γ das Kelleralphabet,

δ : Z × (Σ∪ {ε})× Γ→ Pe(Z × Γ∗) die Überführungsfunktion
(mit Pe Menge aller endlichen Teilmengen)

z0 ∈ Z der Startzustand

# ∈ Γ das unterste Kellerzeichen
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Kellerautomat: Übergangsfunktion

Sei M = (Z ,Σ, Γ, δ, z0,#) Kellerautomat.

Was bedeutet Übergangsfunktion δ intuitiv?

(z ′,B1 . . .Bk) ∈ δ(z , a,A): Wenn M im Zustand z das
Zeichen a liest und A das oberste Kellerzeichen ist,
dann kann M im nächsten Schritt in z ′ übergehen und A
durch B1 . . .Bk ersetzen (danach B1 oberstes Kellerzeichen)

z z ′
a,A→ B1 . . .Bk

Spezialfall a = ε zugelassen (spontaner Übergang)
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Kellerautomat: Beispiel

z z ′

0, 0→ 00
0, 1→ 01
0,#→ 0#
1, 0→ 10
1, 1→ 11
1,#→ 1#

0, 0→ ε

1, 1→ ε

0, 0→ ε
1, 1→ ε
ε#→ ε

M = ({z , z ′}, {0, 1}, {0, 1,#}, δ, z ,#) mit

δ(z , 0, 0) = {(z , 00), (z ′, ε)} δ(z , 1, 0) = {(z , 10)} δ(z , ε, 0) = ∅
δ(z , 0, 1) = {(z , 01)} δ(z , 1, 1) = {(z , 11), (z ′, ε)} δ(z , ε, 1) = ∅
δ(z , 0,#) = {(z , 0#)} δ(z , 1,#) = {(z , 1#)} δ(z , ε,#) = ∅
δ(z ′, 0, 0) = {(z ′, ε)} δ(z ′, 1, 0) = ∅ δ(z ′, ε, 0) = ∅
δ(z ′, 0, 1) = ∅ δ(z ′, 1, 1) = {(z ′, ε)} δ(z ′, ε, 1) = ∅
δ(z ′, 0,#) = {(z ′, ε)} δ(z ′, 1,#) = ∅ δ(z ′, ε,#) =

{(z ′, ε)}
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Kellerautomat: Konfiguration

Definition (Konfiguration eines Kellerautomaten)

Eine Konfiguration eines Kellerautomaten M = (Z ,Σ, Γ, δ, z0,#)
ist gegeben durch ein Tripel k ∈ Z × Σ∗ × Γ∗.

Beispiel

z
Konfiguration
(z , be,BAC#).
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Kellerautomat: Übergang

Definition (Übergang eines Kellerautomaten)

Wir schreiben k `M k ′, falls ein Kellerautomat
M = (Z ,Σ, Γ, δ, z0,#) von Konfiguration k in Konfiguration k ′

übergehen kann. Es sind genau folgende Übergänge möglich:

(z , a1 . . . an,A1 . . .Am) `M
(z ′, a2 . . . an,B1 . . .BkA2 . . .Am)

falls (z ′,B1 . . .Bk) ∈ δ(z , a1,A1)

(z ′, a1a2 . . . an,B1 . . .BkA2 . . .Am)

falls (z ′,B1 . . .Bk) ∈ δ(z , ε,A1)

Falls M aus dem Kontext klar ist, schreiben wir nur k ` k ′.
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Kellerautomat: Erreichbarkeit von Konfigurationen

Definition (Erreichbare Konfiguration)

Konfiguration k ′ ist in PDA M von Konfiguration k aus erreichbar
(k `∗M k ′), falls k = k ′ oder es gibt Konfigurationen k0, . . . , kn
(n ≥ 1), so dass

k0 = k,

ki `M ki+1 für i ∈ {0, . . . , n − 1}, und

kn = k ′.
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Kellerautomat: Erkanntes Wort

Definition (erkanntes Wort bei Kellerautomaten)

PDA M = (Z ,Σ, Γ, δ, z0,#) erkennt das Wort w = a0 . . . an genau
dann, wenn M von der Startkonfiguration (z0,w ,#) durch
endliches Anwenden von δ in eine Konfiguration (z , ε, ε) übergehen
kann (Wort verarbeitet und Keller leer):

M erkennt w gdw. (z0,w ,#) `∗M (z , ε, ε) für ein z ∈ Z .
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Kellerautomat: Beispiel für erkanntes Wort

z z ′

0, 0→ 00
0, 1→ 01
0,#→ 0#
1, 0→ 10
1, 1→ 11
1,#→ 1#

0, 0→ ε

1, 1→ ε

0, 0→ ε
1, 1→ ε
ε#→ ε

Der PDA erkennt zum Beispiel das Wort 11011011.
(Begründung an Tafel)
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Kellerautomat: Akzeptierte Sprache

Definition (akzeptierte Sprache eines PDAs)

Sei M ein Kellerautomat mit Eingabealphabet Σ. Die von M
akzeptierte Sprache ist definiert durch

L(M) = {w ∈ Σ∗ | w wird von M erkannt}.

Beispiel: Tafel
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PDAs akzeptieren genau kontextfreie Sprachen

Satz

Eine Sprache L ist genau dann kontextfrei,
wenn L von einem Kellerautomaten akzeptiert wird.
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PDAs akzeptieren genau kontextfreie Sprachen

Beweis.

⇒: Sei G = (Σ,V ,P,S) eine kontextfreie Grammatik für L.
Der Kellerautomat M = ({z},Σ,V ∪ Σ, δ, z , S) mit folgendem δ
akzeptiert L.

Für jede Regel A→ w ∈ P mit w ∈ (V ∪ Σ)∗ ist
(z ,w) ∈ δ(z , ε,A).

Für a ∈ Σ ist (z , ε) ∈ δ(z , a, a).

Denn:
x ∈ L(G )

gdw. es gibt eine Ableitung in G der Form S ⇒ · · · ⇒ x
gdw. es gibt eine Folge von Konfigurationen von M mit
gdw. (z , x ,S) ` · · · ` (z , ε, ε)
gdw. x ∈ L(M)

. . .
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Für jede Regel A→ w ∈ P mit w ∈ (V ∪ Σ)∗ ist
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Für a ∈ Σ ist (z , ε) ∈ δ(z , a, a).
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PDAs akzeptieren genau kontextfreie Sprachen

Beweis (Fortsetzung).

⇐: Sei M = (Z ,Σ, Γ, δ, z0,#) PDA mit L(M) = L.
Wir nehmen o.B.d.A. an, dass für jede δ-Überführung
(z ′,B1 . . .Bk) ∈ δ(z , a,A) gilt, dass k ≤ 2.

Sonst führen wir für jede Regel (z ′,B1 . . .Bk) ∈ δ(z , a,A) mit
k > 2 neue Zustände z1, . . . , zk−2 ein und ersetzen die Regel
durch

δ(z , a,A) 3 (z1,Bk−1Bk)

δ(z1, ε,Bk−1) = {(z2,Bk−2Bk−1)}
...

δ(zk−3, ε,B3) = {(zk−2,B2B3)}
δ(zk−2, ε,B2) = {(z ′,B1B2)}

. . .
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PDAs akzeptieren genau kontextfreie Sprachen

Beweis (Fortsetzung).

Konstruiere Grammatik G = (V ,Σ,P, S), die Rechenschritte von
M durch Linksableitungsschritte simuliert:

V = {S} ∪ Z × Γ× Z

P = {S → (z0,#, z) | z ∈ Z} ∪
{(z ,A, z ′)→ a | (z ′, ε) ∈ δ(z , a,A)} ∪
{(z ,A, z ′)→ a(z1,B, z

′) | (z1,B) ∈ δ(z , a,A), z ′ ∈ Z} ∪
{(z ,A, z ′)→ a(z1,B, z2)(z2,C , z

′) | (z1,BC ) ∈ δ(z , a,A),

{(z ,A, z ′)→ a(z1,B, z2)(z2,C , z
′) | z ′, z2 ∈ Z}

. . .
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PDAs akzeptieren genau kontextfreie Sprachen

Beweis (Fortsetzung).

Wir werden zunächst allgemein für x ∈ Σ∗ zeigen, dass

(z ,A, z ′)⇒∗G x genau dann wenn (z , x ,A) `∗M (z ′, ε, ε)

Für einen einzelnen Ableitungsschritt und x = a ∈ Σ ∪ {ε} gilt:

(z ,A, z ′)⇒G a gdw. (z ,A, z ′)→ a ∈ P

gdw. (z ′, ε) ∈ δ(z , a,A)

gdw. (z , a,A) `M (z ′, ε, ε)

. . .
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PDAs akzeptieren genau kontextfreie Sprachen

Beweis (Fortsetzung).

Wir zeigen per Induktion über die Anzahl n der Übergänge von M,
dass allgemein (z ,A, z ′)⇒∗G x aus (z , x ,A) `∗M (z ′, ε, ε) folgt.

Für n = 1 (einzelner Übergang) ist das bereits gezeigt.

Falls n > 1, hat x Form x = ay mit a ∈ Σ ∪ {ε}.
Es gibt daher Zustand z1 und Kellerinhalt α, so dass
(z , ay ,A) `M (z1, y , α) `+M (z ′, ε, ε). Unterscheide drei Fälle für α:

Fall α = ε nicht möglich, da (z1, y , ε) keine
Folgekonfiguration besitzt.

Fall α = B: Dann gilt nach IV (z1,B, z
′)⇒∗G y . Wegen Regel

(z ,A, z ′)→ a(z1,B, z
′) gibt es die Gesamtableitung

(z ,A, z ′)⇒ a(z1,B, z
′)⇒∗G ay = x .

. . .
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PDAs akzeptieren genau kontextfreie Sprachen

Beweis (Fortsetzung).

Wir zeigen per Induktion über die Anzahl n der Übergänge von M,
dass allgemein (z ,A, z ′)⇒∗G x aus (z , x ,A) `∗M (z ′, ε, ε) folgt.

Für n = 1 (einzelner Übergang) ist das bereits gezeigt.

Falls n > 1, hat x Form x = ay mit a ∈ Σ ∪ {ε}.
Es gibt daher Zustand z1 und Kellerinhalt α, so dass
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PDAs akzeptieren genau kontextfreie Sprachen

Beweis (Fortsetzung).

Fall α = BC : (z1, y ,BC ) `∗M (z ′, ε, ε) kann zerlegt werden in
(z1, y ,BC `∗M (z2, y2,C ) und (z2, y2,C ) `∗M (z ′, ε, ε), so dass
y2 Suffix von y ist, d.h. y = y1y2. Für y1 gilt zudem, dass
(z1, y1,B) `∗M (z2, ε, ε).

Nach IV gilt daher (z1,B, z2)⇒∗G y1 und (z2,C , z
′)⇒∗G y2.

Wegen des Übergangs (z , ay ,A) `M (z1, y ,BC ) muss es in P
eine Regel der Form (z ,A, z ′)→ a(z1,B, z2)(z2,C , z

′) geben.

Wir erhalten zusammen die Ableitung
(z ,A, z ′)⇒G a(z1,B, z2)(z2,C , z

′)⇒∗G ay1y2 = x .

. . .



Kellerautomaten Zusammenfassung

PDAs akzeptieren genau kontextfreie Sprachen

Beweis (Fortsetzung).

Bleibt zu zeigen, dass aus der Ableitbarkeit (z ,A, z ′)⇒∗G x die
Übergangsmöglichkeit (z , x ,A) `∗M (z ′, ε, ε) folgt. Wir zeigen dies
per Induktion über die Länge k der Linksableitung von x .

Für k = 1 (ein Ableitungsschritt) ist dies bereits erledigt.

Für k > 1 unterscheide drei Fälle:

Fall (z ,A, z ′)⇒G a⇒∗G x : Dann ist x = a, was bei k > 1
nicht möglich ist.

Fall (z ,A, z ′)⇒G a(z1,B, z
′)⇒∗G ay = x : Dann ist

(z1,B) ∈ δ(z , a,A) und nach IV gilt (z1, y ,B) `∗M (z ′, ε, ε).
Insgesamt folgt (z , ay ,A) `M (z1, y ,B) `∗M (z ′, ε, ε).

. . .
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PDAs akzeptieren genau kontextfreie Sprachen

Beweis (Fortsetzung).

Bleibt zu zeigen, dass aus der Ableitbarkeit (z ,A, z ′)⇒∗G x die
Übergangsmöglichkeit (z , x ,A) `∗M (z ′, ε, ε) folgt. Wir zeigen dies
per Induktion über die Länge k der Linksableitung von x .

Für k = 1 (ein Ableitungsschritt) ist dies bereits erledigt.

Für k > 1 unterscheide drei Fälle:

Fall (z ,A, z ′)⇒G a⇒∗G x : Dann ist x = a, was bei k > 1
nicht möglich ist.

Fall (z ,A, z ′)⇒G a(z1,B, z
′)⇒∗G ay = x : Dann ist

(z1,B) ∈ δ(z , a,A) und nach IV gilt (z1, y ,B) `∗M (z ′, ε, ε).
Insgesamt folgt (z , ay ,A) `M (z1, y ,B) `∗M (z ′, ε, ε).

. . .



Kellerautomaten Zusammenfassung

PDAs akzeptieren genau kontextfreie Sprachen

Beweis (Fortsetzung).

Bleibt zu zeigen, dass aus der Ableitbarkeit (z ,A, z ′)⇒∗G x die
Übergangsmöglichkeit (z , x ,A) `∗M (z ′, ε, ε) folgt. Wir zeigen dies
per Induktion über die Länge k der Linksableitung von x .

Für k = 1 (ein Ableitungsschritt) ist dies bereits erledigt.

Für k > 1 unterscheide drei Fälle:

Fall (z ,A, z ′)⇒G a⇒∗G x : Dann ist x = a, was bei k > 1
nicht möglich ist.

Fall (z ,A, z ′)⇒G a(z1,B, z
′)⇒∗G ay = x : Dann ist

(z1,B) ∈ δ(z , a,A) und nach IV gilt (z1, y ,B) `∗M (z ′, ε, ε).
Insgesamt folgt (z , ay ,A) `M (z1, y ,B) `∗M (z ′, ε, ε).

. . .
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PDAs akzeptieren genau kontextfreie Sprachen

Beweis (Fortsetzung).

Bleibt zu zeigen, dass aus der Ableitbarkeit (z ,A, z ′)⇒∗G x die
Übergangsmöglichkeit (z , x ,A) `∗M (z ′, ε, ε) folgt. Wir zeigen dies
per Induktion über die Länge k der Linksableitung von x .

Für k = 1 (ein Ableitungsschritt) ist dies bereits erledigt.

Für k > 1 unterscheide drei Fälle:

Fall (z ,A, z ′)⇒G a⇒∗G x : Dann ist x = a, was bei k > 1
nicht möglich ist.

Fall (z ,A, z ′)⇒G a(z1,B, z
′)⇒∗G ay = x : Dann ist

(z1,B) ∈ δ(z , a,A) und nach IV gilt (z1, y ,B) `∗M (z ′, ε, ε).
Insgesamt folgt (z , ay ,A) `M (z1, y ,B) `∗M (z ′, ε, ε).

. . .
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PDAs akzeptieren genau kontextfreie Sprachen

Beweis (Fortsetzung).

Fall (z ,A, z ′)⇒G a(z1,B, z2)(z2,C , z
′)⇒∗G ay = x : Dann ist

(z1,BC ) ∈ δ(z , a,A) und nach IV gilt (z1, y ,B) `∗M (z2, ε, ε)
und (z2, y2,C ) `∗M (z ′, ε, ε), wobei y = y1y2. Insgesamt folgt
(z , ay1y2,A) `M (z1, y1y2,BC ) `∗M (z2, y2,C ) `∗M (z ′, ε, ε).

. . .



Kellerautomaten Zusammenfassung

PDAs akzeptieren genau kontextfreie Sprachen

Beweis (Fortsetzung).

Insgesamt haben wir für einen gegebenen PDA M eine kontextfreie
Grammatik G angegeben, so dass für alle Wörter x gilt

(z ,A, z ′)⇒∗G x genau dann wenn (z , x ,A) `∗M (z ′, ε, ε)

Damit gilt

x ∈ L(M) gdw. (z0, x ,#) `∗M (z , ε, ε) für ein z ∈ Z

gdw. S ⇒G (z0,#, z)⇒∗G x für ein z ∈ Z

gdw. x ∈ L(G ).

Die Grammatik erzeugt also die vom PDA akzeptierte Sprache.
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PDAs akzeptieren genau kontextfreie Sprachen

Beweis (Fortsetzung).

Insgesamt haben wir für einen gegebenen PDA M eine kontextfreie
Grammatik G angegeben, so dass für alle Wörter x gilt

(z ,A, z ′)⇒∗G x genau dann wenn (z , x ,A) `∗M (z ′, ε, ε)

Damit gilt

x ∈ L(M) gdw. (z0, x ,#) `∗M (z , ε, ε) für ein z ∈ Z

gdw. S ⇒G (z0,#, z)⇒∗G x für ein z ∈ Z

gdw. x ∈ L(G ).

Die Grammatik erzeugt also die vom PDA akzeptierte Sprache.
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Zusammenfassung

Kellerautomaten (PDAs) erweitern NFAs um Speicher.

PDAs akzeptieren nicht mit Endzuständen, sondern mit
leerem Keller.

Die von PDAs akzeptierten Sprachen sind genau die
kontextfreien Sprachen.
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Weitere Themen zu kontextfreien Sprachen und PDAs

Mit dem CYK-Algorithmus (nach Cocke, Younger und
Kasami) kann man für eine Grammatik G in CNF und ein
Wort w in Zeit O(|w |3) entscheiden, ob w ∈ L(G ).

In der Greibach-Normalform für kontextfreie Sprachen haben
alle Regeln die Form A→ aB1B2 . . .Bk (k ≥ 0) oder S → ε
mit Startsymbol S .

Deterministische Kellerautomaten haben die Einschränkung,
dass für z ∈ Z , a ∈ Σ,A ∈ Γ gilt |δ(z , a,A)|+ |δ(z , ε,A)| ≤ 1.
Zudem akzeptieren sie nicht mit leerem Keller, sondern mit
Endzuständen.

Die Klasse der von deterministischen PDAs akzeptierten
Sprachen heisst deterministisch kontextfreie Sprachen. Sie ist
echte Obermenge der regulären Sprachen und echte
Teilmenge der kontextfreien Sprachen.
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