Planning and Optimization
G2. Symbolic Search: BDD Operations and Breadth-First Search

Malte Helmert and Gabriele Roger

Universitat Basel

December 13, 2017

Content of this Course

—| Tasks |

Progression/
Regression

Planning |——{ Complexity |

—| Breadth-first Search |

-—| Uniform-cost Search |

—| A* Search |

—| Heuristics |

BDD Operations
©00000000000000000000

BDD Operations

BDD Operations
0®0000000000000000000

Reminder: BDD Implementation — Data Structures

Data Structures

@ Every BDD (including sub-BDDs) B is represented by a single
natural number id(B) called its ID.
The zero BDD has ID —2, the one BDD ID —1.

@ There are three global vectors to represent the decision
variable, the 0- and the 1-successor of non-sink BDDs:

@ There is a global hash table lookup which maps, for each ID
i > 0 representing a BDD in use, the triple
(varli], lowli], high[i]) to i.

BDD Operations
00®000000000000000000

BDD Operations: Notations

For convenience, we introduce some additional notations:
o We define 0 := zero(), 1 := one().

o We write var, low, high as attributes:

o B.var for var|B]
o B.low for low[B]
o B.high for high[B]

BDD Operations
000@00000000000000000

Essential vs. Derived BDD Operations

We distinguish between
@ essential BDD operations, which are implemented directly on
top of zero, one and bdd, and
@ derived BDD operations, which are implemented in terms of
the essential operations.

BDD Operations
0000®0000000000000000

Essential BDD Operations

We study the following essential operations:
@ bdd-includes(B, s): Test s € r(B).
bdd-equals(B, B’): Test r(B) = r(B’).
bdd-atom(v): Build BDD representing {s | s(v) = 1}.
bdd-state(s): Build BDD representing {s}.
bdd-union(B, B’): Build BDD representing r(B) U r(B’).

bdd-complement(B): Build BDD representing r(B).
bdd-forget(B, v): Described later.

BDD Operations
00000e000000000000000

Essential Operations: Memoization

@ The essential functions are all defined recursively and are free
of side effects.

@ We assume (without explicit mention in the pseudo-code)
that they all use dynamic programming (memoization):

o Every return statement stores the arguments and result in a
memo hash table.

o Whenever a function is invoked, the memo is checked if the
same call was made previously. If so, the result from the memo
is taken to avoid recomputations.

@ The memo may be cleared when the “outermost” recursive
call terminates.

e The bdd-forget function calls the bdd-union function internally.
In this case, the memo for bdd-union may only be cleared once
bdd-forget finishes, not after each bdd-union invocation
finishes.

Memoization is critical for the mentioned runtime bounds.

BDD Operations
000000e00000000000000

Essential BDD Operations: bdd-includes

Test s € r(B)
def bdd-includes(B, s):

if B=0:
return false
else if B=1:

return true
else if s[B.var] = 1:

return bdd-includes(B.high, s)
else:

return bdd-includes(B.low, s)

e Runtime: O(k)

@ This works for partial or full valuations s, as long as all
variables appearing in the BDD are defined.

BDD Operations
0000000e0000000000000

Essential BDD Operations: bdd-equals

Test r(B) = r(B')

def bdd-equals(B, B'):
return B =B’

e Runtime: O(1)

BDD Operations
00000000e000000000000

Essential BDD Operations: bdd-atom

Build BDD representing {s | s(v) =1}

def bdd-atom(v):
return bdd(v,0,1)

e Runtime: O(1)

BDD Operations
000000000e00000000000

Essential BDD Operations: bdd-state

Build BDD representing {s}

def bdd-state(s):
B =1
for each variable v of s, in reverse variable order:
if s(v)=1:
B := bdd(v,0, B)
else:
B := bdd(v, B, 0)
return B)

e Runtime: O(k)

@ Works for partial or full valuations s.

BDD Operations
0000000000e0000000000

Essential BDD Operations: bdd-state Example

Example (bdd-state({vi — 1,v3 — 0, va — 1}))

BDD Operations
0000000000e0000000000

Essential BDD Operations: bdd-state Example

Example (bdd-state({vi — 1,v3 — 0, va — 1}))

BDD Operations
0000000000e0000000000

Essential BDD Operations: bdd-state Example

Example (bdd-state({vi — 1,v3 — 0, va — 1}))

[y

BDD Operations
0000000000e0000000000

Essential BDD Operations: bdd-state Example

Example (bdd-state({vi — 1,v3 — 0, va — 1}))

BDD Operations
0000000000e0000000000

Essential BDD Operations: bdd-state Example

Example (bdd-state({vi — 1,v3 — 0, va — 1}))

BDD Operations
00000000000e000000000

Essential BDD Operations: bdd-union

Build BDD representing r(B) U r(B’)

def bdd-union(B, B'):
if B=0and B’ =0: return 0
elseif B=1or B'=1: return 1
else if B =0: return B’
else if B’ = 0: return B
else if B.var < B’.var:
return bdd(B.var, bdd-union(B.low, B'),
bdd-union(B.high, B))
else if B.var = B’.var:
return bdd(B.var, bdd-union(B.low, B’ .low),
bdd-union(B.high, B’.high))
else if B.var > B’.var:
return bdd(B’.var, bdd-union(B, B’ low),
bdd-union(B, B’ .high))

e Runtime: O(||B| - ||BI)

BDD Operations
000000000000e00000000

Essential BDD Operations: bdd-complement

Build BDD representing r(B)

def bdd-complement(B):

if B=0:
return 1

else if B=1:
return 0

else:
return bdd(B.var, bdd-complement(B.low),

bdd-complement(B.high))

e Runtime: O(||B||)

BDD Operations

0000000000000 e0000000

Essential BDD Operations: bdd-forget (1)

The last essential BDD operation is a bit more unusual, but we will
need it for defining the semantics of operator application.

Definition (Existential Abstraction)

Let V be a set of propositional variables, let S be a set of variable
assignments over V, and let v € V.

The existential abstraction of v in S, in symbols Jv.S,

is the set of valuations

{s:(V\{v})—>{0,1} |Is€ S:s Cs}

over V \ {v}.

Existential abstraction is also called forgetting.

BDD Operations
00000000000000e000000

Essential BDD Operations: bdd-forget (2)

Build BDD representing Jv.r(B)

def bdd-forget(B, v):
if B=0or B=1or B.ar > v:
return B
else if B.var < v:
return bdd(B.var, bdd-forget(B.low, v),
bdd-forget(B.high, v))

else:
return bdd-union(B.low, B.high)

o Runtime: O(||B|?)

BDD Operations
000000000000000e00000

Essential BDD Operations: bdd-forget Example

Example (Forgetting v»)

BDD Operations
000000000000000e00000

Essential BDD Operations: bdd-forget Example

Example (Forgetting v»)

BDD Operations
000000000000000e00000

Essential BDD Operations: bdd-forget Example

Example (Forgetting v»)

[bdd

@ | o || Bekonmion

BDD Operations
000000000000000e00000

Essential BDD Operations: bdd-forget Example

Example (Forgetting v»)

[bdd

& H [1]

BDD Operations
000000000000000e00000

Essential BDD Operations: bdd-forget Example

Example (Forgetting v»)

BDD Operations
0000000000000000e0000

Derived BDD Operations

We study the following derived operations:

@ bdd-intersection(B, B’):
Build BDD representing r(B) N r(B’).
@ bdd-setdifference(B, B'):
Build BDD representing r(B) \ r(B').
e bdd-isempty(B):
Test r(B) = (.
@ bdd-rename(B, v, V'):
Build BDD representing {rename(s,v,v') | s € r(B) }, where

rename(s, v,v') is the variable assignment s with variable v
renamed to v'.

o If variable v/ occurs in B already, the result is undefined.

BDD Operations
00000000000000000e000

Derived Operations: bdd-intersection, bdd-setdifference

Build BDD representing r(B) N r(B’)
def bdd-intersection(B, B'):
not-B := bdd-complement(B)
not-B’ := bdd-complement(B’)
return bdd-complement(bdd-union(not-B, not-B’))

Build BDD representing r(B) \ r(B’)

def bdd-setdifference(B, B’):
return bdd-intersection(B, bdd-complement(B’))

e Runtime: O(||B| - ||BI)

@ These functions can also be easily implemented directly,
following the structure of bdd-union.

BDD Operations

0000000000000 00000e00

Derived BDD Operations: bdd-isempty

def bdd-isempty(B):
return bdd-equals(B,0)

e Runtime: O(1)

BDD Operations
0000000000000000000e0

Derived BDD Operations: bdd-rename

Build BDD representing {rename(s,v,v') | s € r(B) }

def bdd-rename(B, v, v'):
v-and-v’' := bdd-intersection(bdd-atom(v), bdd-atom(v'))
not-v := bdd-complement(bdd-atom(v))
not-v’ := bdd-complement(bdd-atom(v"))
not-v-and-not-v' := bdd-intersection(not-v, not-v’)
v-eq-v' := bdd-union(v-and-v', not-v-and-not-v’)
return bdd-forget(bdd-intersection(B, v-eq-v’), v)

e Runtime: O(||B|?)

BDD Operations
00000000000000000000e

Derived BDD Operations: bdd-rename Remarks

@ Renaming sounds like a simple operation.

o Why is it so expensive?

This is not because the algorithm is bad:
@ Renaming must take at least quadratic time:

o There exist families of BDDs B, with k variables such that
renaming vy to vi1 increases the size of the BDD from ©(n)

to ©(n?).
@ However, renaming is cheap in some cases:

o For example, renaming to a neighboring unused variable (e.g.
from v; to v;y1) is always possible in linear time by simply
relabeling the decision variables of the BDD.

@ In practice, one can usually choose a variable ordering where
renaming only occurs between neighboring variables.

Symbolic Breadth-first Search

Symbolic Breadth-first Search

Symbolic Breadth-first Search
0®0000000

Content of this Course

—| Tasks |

Progression/
Regression

Planning |——{ Complexity |

— BDDs |
P et frs Searh |

-—| Uniform-cost Search |

—| A* Search |

Symbolic Breadth-first Search
00®000000

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V, I, O, 7):
goal := formula-to-set(~)
reachedy = {I}
=0
loop:
if reached; N goal # :
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Symbolic Breadth-first Search
00®000000

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V, I, O, 7):
goal := formula-to-set(+y)
reachedy = {I}
=0
loop:
if reached; N goal # :
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Use bdd-atom, bdd-complement, bdd-union, bdd-intersection.

Symbolic Breadth-first Search
00®000000

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V, I, O, 7):
goal := formula-to-set(~)
reachedy == {/}
=0
loop:
if reached; N goal # :
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Use bdd-state.

Symbolic Breadth-first Search
00®000000

Breadth-first Search with Progression and BDDs

def bfs-progression(V, I, O, 7):
goal := formula-to-set(~)
reachedy = {I}
=0
loop:
if reached; N goal # 0
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Use bdd-intersection, bdd-isempty.

Symbolic Breadth-first Search
00®000000

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V, I, O, 7):
goal := formula-to-set(~)
reachedy = {I}
=0
loop:
if reached; N goal # :
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Use bdd-union.

Symbolic Breadth-first Search
00®000000

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V, I, O, 7):
goal := formula-to-set(~)
reachedy = {I}
=0
loop:
if reached; N goal # :
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Use bdd-equals.

Symbolic Breadth-first Search
00®000000

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V, I, O, 7):
goal := formula-to-set(~)
reachedy = {I}
=0
loop:
if reached; N goal # :
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

How to do this?

Symbolic Breadth-first Search
000®00000

The apply Function (1)

@ We need an operation that, for a set of states reached;
(given as a BDD) and a set of operators O, computes the set
of states (as a BDD) that can be reached by applying some
operator o € O in some state s € reached.

@ We have seen something similar already. ..

Symbolic Breadth-first Search
0000®0000

Translating Operators into Formulae

Definition (Operators in Propositional Logic)

Let o be an operator and V a set of state variables.
Define 7v/(0) := pre(o) A A\, c\ (regr(v, eff0)) < V).

States that o is applicable and describes when the new value of v,
represented by v/, is T.

Symbolic Breadth-first Search
00000e000

The apply Function (2)

@ The formula 7y (o) describes the applicability of a single
operator o and the effect of applying o as a binary formula
over variables V' (describing the state in which o is applied)
and V' (describing the resulting state).

@ The formula \/ .o 7v(0) describes state transitions by any
operator in O.

@ We can translate this formula to a BDD (over variables
V U V') using bdd-atom, bdd-complement, bdd-union,
bdd-intersection.

@ The resulting BDD is called the transition relation of the
planning task, written as Ty/(O).

Symbolic Breadth-first Search
000000e®00

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function

def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B)

Symbolic Breadth-first Search
000000e®00

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function

def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B

This describes the set of state pairs (s, s’) where s’ is a successor
of s in terms of variables V U V.

Symbolic Breadth-first Search
000000e®00

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function

def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B

This describes the set of state pairs (s, s’) where s’ is a successor
of s and s € reached in terms of variables V U V'.

Symbolic Breadth-first Search
000000e®00

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function

def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B

This describes the set of states s’ which are successors
of some state s € reached in terms of variables V".

Symbolic Breadth-first Search
000000e®00

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function

def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B

This describes the set of states s’ which are successors
of some state s € reached in terms of variables V.

Symbolic Breadth-first Search
000000e®00

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function

def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B

Thus, apply indeed computes the set of successors of reached
using operators O.

BDD Operations Symbolic Breadth-first Search

0000000 e0

Plan Extraction

We can construct a plan from the BDDs reached;
(set given as parameter reached,.):

Construct Plan

def construct_plan(/, O, v, reached., imax):
goal := BDD for v
s := arbitrary state from bdd-intersection(goal, reached

=)
for i = jpmax — 1 to O:
for o € O:
p := BDD for regr(s, o)
if ¢ := bdd-intersection(p, reached;) # 0:
s := arbitrary state from ¢
= (o)T
break
return 7

max)

Symbolic Breadth-first Search
00000000e

RENMENS

BDDs can be used to implement a blind breadth-first search
algorithm in an efficient way.

@ For good performance, we need a good variable ordering.

o Variables that refer to the same state variable before and after
operator application (v and v’) should be neighbors in the
transition relation BDD.

@ Use mutexes to reformulate as a multi-valued task.

o Use [log, n] BDD variables to represent a variable with n
possible values.

Summary

Summary
oce

Summary

@ Binary decision diagrams are a data structure to compactly
represent and manipulate sets of valuations.

@ They can be used to implement a blind breadth-first search
algorithm in an efficient way.

	BDD Operations
	Symbolic Breadth-first Search
	Summary

