

Planning and Optimization December 11, 2017 — F5. Comparison of Heuristic Families I	
F5.1 Comparing Heuristic Classes	
F5.2 What to Compare?	
F5.3 Landmarks vs. Abstractions	
F5.4 Summary	
M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 11, 2017 2 / 2	3

F5.1 Comparing Heuristic Classes

F5. Comparison of Heuristic Families I

Comparing Heuristic Classes

F5. Comparison of Heuristic Families I Comparing Heuristic Classes F5. Comparison of Heuristic Families I Comparing Heuristic Classes **Comparing Heuristic Quality** Heuristic Classes ▶ We have seen many different heuristics. ▶ Many "heuristics" we have seen are actually heuristic classes Can we compare their quality? of many different specific heuristics. ► For inadmissible heuristics, it is very hard to compare their ▶ There is no single PDB heuristic but one such heuristic for quality theoretically (need a model of the search space). each pattern. Merge-and-shrink heuristics depend on the merge and For admissible heuristics, if $h(s) \ge h'(s)$ for all states s then h shrinking strategies (and tie-breaking). is at least as good as h' in terms of heuristic quality. Different sets of landmarks lead to different landmark • For example, we know that $h^m > h^{m'}$ for m > m', so the heuristics. heuristic quality of h^m cannot get worse with larger m. ▶ Only very few heuristics can be compared with this strong ▶ How can we compare such heuristic classes? notion of dominance. M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 11, 2017 5 / 23 M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 11, 2017 6 / 23 F5. Comparison of Heuristic Families I F5. Comparison of Heuristic Families I Comparing Heuristic Classes Comparing Heuristic Classes Comparing Heuristic Classes (1) Comparing Heuristic Classes (2) • Compare best cases: Given the best heuristic of class \mathcal{H} , can Cost partitioning allows to derive strong heuristic ensembles we find a heuristic of class \mathcal{H}' that is at least as good? even from comparatively weak heuristics. ▶ No need to talk about a specific best heuristic (which is hard ▶ We want to consider this in our comparison: to identify), we can consider arbitrary heuristics instead:

- Given an arbitrary heuristic of class \mathcal{H} , can we find a heuristic of class \mathcal{H}' that is at least as good?
- ▶ It is only very rarely the case that there is a single heuristic that works globally for all states (as for example with PDB heuristics and merge-and-shrink heuristics).
- ► Focus on individual states instead: Given an arbitrary heuristic of class \mathcal{H} and a state s, can we find a heuristic of class \mathcal{H}' that is at least as good on state s?

Planning and Optimization

- Given an arbitrary additive set of heuristics of class ${\cal H}$ and a
- state s, can we find an additive set of heuristics of class \mathcal{H}' that is at least as good on state *s*?
- ▶ Some classes cover the perfect heuristic. For example, exponential-size abstractions can always represent h^* .
- ▶ To prevent such trivial cases, we concentrate on heuristics that can be computed in polynomial time in the representation size of the task.

7 / 23

F5. Comparison of Heuristic Families I

Comparing Heuristic Classes

December 11, 2017 9 / 23

Compilability

What to Compare?

Definition (Compilability)

A class of heuristics \mathcal{H} is compilable to a class of heuristics \mathcal{H}' if for every state *s* and every additive set of heuristics h_1, \ldots, h_n of class \mathcal{H} we can compute an additive set of heuristics h'_1, \ldots, h'_m of class \mathcal{H}' such that $\sum_{i=1}^n h_i(s) \leq \sum_{i=1}^m h'_i(s)$.

Planning and Optimization

It is sufficient to consider n = 1. Why?

Analogy to reduction in theoretical computer science.

M. Helmert, G. Röger (Universität Basel)

F5.2 What to Compare?

F5. Comparison of Heuristic Families I

F5. Comparison of Heuristic Families I

What to Compare?

Landmarks (1)

- Have seen LM-Cut, LM-count and cost-partitioning for landmarks.
- LM-count is inadmissible.
- ► All admissible heuristics can be expressed by cost partitioning and heuristics that use the cost of the landmark as estimate.
- Most landmark generation methods only generate landmarks of the delete relaxation, which is a severe limitation.

Planning and Optimization

▶ We therefore analyse such relaxation-based landmark heuristics.

M. Helmert, G. Röger (Universität Basel)

December 11, 2017 13 / 23

F5. Comparison of Heuristic Families I

Planning and Optimization

```
F5. Comparison of Heuristic Families I
Landmarks (2)
```

Definition (Elementary Landmark Heuristic) The elementary landmark heuristic for planning task $\Pi = \langle V, I, O, \gamma \rangle$ and operator subset $L \subseteq O$ is

 $h_L(s) = \begin{cases} \min_{o \in L} cost(o) \\ 0 \end{cases}$ if L^+ is a landmark for s in Π^+ otherwise

Additive sets of such heuristics cover all admissible relaxation-based landmark heuristics we have seen (on a specific state).

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

December 11, 2017 14 / 23

What to Compare?

15 / 23

Planning and Optimization

F5. Comparison of Heuristic Families I

Abstractions to Landmarks

Theorem

There is no compilation of PDB heuristics into elementary landmarks.

Proof.

The estimate of a PDB heuristic can exceed h^+ while elementary landmark heuristics are bounded by h^+ .

Planning and Optimization

The result directly carries over to merge-and-shrink heuristics.

M. Helmert, G. Röger (Universität Basel)

F5. Comparison of Heuristic Families I

Landmarks vs. Abstractions

17 / 23

December 11, 2017

Landmarks vs. Abstractions

Landmarks to Merge-and-Shrink Abstractions (1)

Theorem

Elementary landmarks can be compiled into merge-and-shrink abstractions in polynomial time.

Proof.

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task and $L \subseteq O$. Let U be the set of variables that cannot be reached from s in Π^+ without using an operator from L^+ . Consider abstraction

Unsider abstraction

$$\alpha(s') = \begin{cases} s_u & s' \models \bigvee_{v \in U} v \\ s_r & \text{otherwise} \end{cases}$$

. . .

Planning and Optimization

Landmarks to PDBs

Theorem (Landmarks to PDBs)

There is no polynomial-time compilation of elementary landmarks into PDB heuristics.

Proof.

Consider task family $(\Pi_n)_{n \in \mathbb{N}_1}$, where $\Pi_n = \langle V_n, I_n, O_n, g \rangle$ with $V_n = \{v_1, \ldots, v_n, g\}$, $I_n(v) = \mathbf{F}$ for $v \in V_n$, and $O = \{\langle \top, v_i, 1 \rangle \mid 1 \le i \le n\} \cup \{\langle v_i, g, 0 \rangle \mid 1 \le i \le n\}$. $L = \{\langle \top, v_i, 1 \rangle \mid 1 \le i \le n\}$ is a landmark for I, so $h_L(I) = 1$. However, the initial estimate of every PDB heuristic that projects away at least one variable v is 0, as the abstract goal can be reached with $\langle v, g, 0 \rangle$. For large enough n, any polynomial-time

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

December 11, 2017 18 / 23

F5. Comparison of Heuristic Families I Landmarks to Merge-and-Shrink Abstractions (2)

compilation must project away a variable.

Proof (continued).

The abstraction can be computed as merge-and-shrink abstraction in polynomial time by a linear merge strategy with arbitrary variable order. After each merge step, shrink all abstract states where all (already included) variables in U have value **F** to one state and all other states to a second state.

If L^+ is not a landmark for s in Π^+ , then $h_L(s) = 0$ and trivially $h^{\alpha}(s) \ge h_L(s)$.

If L^+ is a landmark then $\gamma \models \bigvee_{v \in U} v$. So, for all goal states s_* it holds that $\alpha(s_*) = s_u$, so s_u is the only abstract goal state. ...

Landmarks vs. Abstractions

Landmarks vs. Abstractions

Landmarks to Merge-and-Shrink Abstractions (3)

Proof (continued). As all true variables in s are reachable from s in Π^+ , $s \not\models \bigvee_{v \in U} v$ and $\alpha(s) = s_r$. All abstract plans for s must contain a transition from s_r to s_u and $h^{\alpha}(s)$ is the minimal cost of all such transitions. Assume that there is a transition from a state s_1 with $\alpha(s_1) = s_r$ to a state s_2 with $\alpha(s_2) = s_u$ by an operator $o \notin L$. Then o^+ is applicable in s_1 and leads to a state where a variable from U is true, contradicting the definition of U. Therefore all abstract transitions from s_r to s_u are induced by an operator from *L* and have cost at least $\min_{o \in L} cost(o)$. So $h^{\alpha}(s) \geq \min_{o \in L} cost(o) = h_L(s)$. M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 11, 2017 21 / 23

F5. Comparison of Heuristic Families I

Summary

- We can use compilability to compare the power of different classes of admissible heuristics.
- So far we have established that PDB heuristics are incomparable with landmark heuristics, and
- Merge-and-shrink heuristics strictly dominate landmark heuristics.

F5.4 Summary	

F5. Comparison of Heuristic Families I

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 11, 2017 22 / 23

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 11, 2017 23 / 23

Summary