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Comparing Heuristic Quality

I We have seen many different heuristics.
Can we compare their quality?

I For inadmissible heuristics, it is very hard to compare their
quality theoretically (need a model of the search space).

I For admissible heuristics, if h(s) ≥ h′(s) for all states s then h
is at least as good as h′ in terms of heuristic quality.

I For example, we know that hm ≥ hm
′

for m ≥ m′, so the
heuristic quality of hm cannot get worse with larger m.

I Only very few heuristics can be compared with this strong
notion of dominance.
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Heuristic Classes

I Many “heuristics” we have seen are actually heuristic classes
of many different specific heuristics.

I There is no single PDB heuristic but one such heuristic for
each pattern.

I Merge-and-shrink heuristics depend on the merge and
shrinking strategies (and tie-breaking).

I Different sets of landmarks lead to different landmark
heuristics.

I . . .

I How can we compare such heuristic classes?
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Comparing Heuristic Classes (1)

I Compare best cases: Given the best heuristic of class H, can
we find a heuristic of class H′ that is at least as good?

I No need to talk about a specific best heuristic (which is hard
to identify), we can consider arbitrary heuristics instead:
Given an arbitrary heuristic of class H, can we find a heuristic
of class H′ that is at least as good?

I It is only very rarely the case that there is a single heuristic
that works globally for all states (as for example with PDB
heuristics and merge-and-shrink heuristics).

I Focus on individual states instead: Given an arbitrary heuristic
of class H and a state s, can we find a heuristic of class H′
that is at least as good on state s?
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Comparing Heuristic Classes (2)

I Cost partitioning allows to derive strong heuristic ensembles
even from comparatively weak heuristics.

I We want to consider this in our comparison:
Given an arbitrary additive set of heuristics of class H and a
state s, can we find an additive set of heuristics of class H′
that is at least as good on state s?

I Some classes cover the perfect heuristic. For example,
exponential-size abstractions can always represent h∗.

I To prevent such trivial cases, we concentrate on heuristics
that can be computed in polynomial time in the
representation size of the task.
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Compilability

Definition (Compilability)

A class of heuristics H is compilable to a class of heuristics H′ if
for every state s and every additive set of heuristics h1, . . . , hn of
class H we can compute an additive set of heuristics h′1, . . . , h

′
m of

class H′ such that
∑n

i=1 hi (s) ≤
∑m

i=1 h
′
i (s).

It is sufficient to consider n = 1. Why?

Analogy to reduction in theoretical computer science.
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F5.2 What to Compare?
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Delete Relaxation

I hadd and hFF are inadmissible.

I h+ is NP-hard to compute.

I This leaves hmax.

I Reminder: hmax ≤ h+

Throughout this topic, we write

I o+ for the delete-relaxation of operator o,

I for sets O of operators: O+ for {o+ | o ∈ O}, and

I Π+ for the delete-relaxation of task Π.
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Abstraction

I In this course: PDB and merge-and-shrink heuristics

I Both are admissible.

I Merge-and-shrink heuristics are at least as powerful as PDB
heuristics because we can compute an equivalent
merge-and-shrink heuristic for each PDB heuristic with only
polynomial overhead.

I Merge-and-shrink heuristics can represent abstractions that
are not projections, so merge-and-shrink heuristics are strictly
more powerful than PDBs.

I Makes sense to compare other heuristic classes to both of
these abstraction heuristic classes.
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Landmarks (1)

I Have seen LM-Cut, LM-count and cost-partitioning for
landmarks.

I LM-count is inadmissible.

I All admissible heuristics can be expressed by cost partitioning
and heuristics that use the cost of the landmark as estimate.

I Most landmark generation methods only generate landmarks
of the delete relaxation, which is a severe limitation.

I We therefore analyse such relaxation-based landmark
heuristics.
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Landmarks (2)

Definition (Elementary Landmark Heuristic)

The elementary landmark heuristic for planning task
Π = 〈V , I ,O, γ〉 and operator subset L ⊆ O is

hL(s) =

{
mino∈L cost(o) if L+ is a landmark for s in Π+

0 otherwise

Additive sets of such heuristics cover all admissible relaxation-based
landmark heuristics we have seen (on a specific state).
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Critical Paths

I The hm heuristic family is admissible.

I For m ≥ m′, hm(s) ≥ hm
′
(s) for all states s.

I For m > m′, there are tasks and states s with hm(s) > hm
′
(s).

I For large enough m (depending on the task), hm = h∗.

I Computation is exponential in m.

I Polynomial-time compilations can only compile to
critical path heuristics for fixed m.

I Reminder: h1 = hmax
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F5.3 Landmarks vs. Abstractions
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Abstractions to Landmarks

Theorem
There is no compilation of PDB heuristics into elementary
landmarks.

Proof.

The estimate of a PDB heuristic can exceed h+ while elementary
landmark heuristics are bounded by h+.

The result directly carries over to merge-and-shrink heuristics.
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Landmarks to PDBs

Theorem (Landmarks to PDBs)

There is no polynomial-time compilation of elementary landmarks
into PDB heuristics.

Proof.

Consider task family (Πn)n∈N1 , where Πn = 〈Vn, In,On, g〉 with
Vn = {v1, . . . , vn, g}, In(v) = F for v ∈ Vn, and
O = {〈>, vi , 1〉 | 1 ≤ i ≤ n} ∪ {〈vi , g , 0〉 | 1 ≤ i ≤ n}.
L = {〈>, vi , 1〉 | 1 ≤ i ≤ n} is a landmark for I , so hL(I ) = 1.

However, the initial estimate of every PDB heuristic that projects
away at least one variable v is 0, as the abstract goal can be
reached with 〈v , g , 0〉. For large enough n, any polynomial-time
compilation must project away a variable.
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Landmarks to Merge-and-Shrink Abstractions (1)

Theorem
Elementary landmarks can be compiled into merge-and-shrink
abstractions in polynomial time.

Proof.

Let Π = 〈V , I ,O, γ〉 be a STRIPS planning task and L ⊆ O.
Let U be the set of variables that cannot be reached from s
in Π+ without using an operator from L+.
Consider abstraction

α(s ′) =

{
su s ′ |=

∨
v∈U v

sr otherwise

. . .
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Landmarks to Merge-and-Shrink Abstractions (2)

Proof (continued).

The abstraction can be computed as merge-and-shrink abstraction
in polynomial time by a linear merge strategy with arbitrary
variable order. After each merge step, shrink all abstract states
where all (already included) variables in U have value F to one
state and all other states to a second state.

If L+ is not a landmark for s in Π+, then hL(s) = 0 and trivially
hα(s) ≥ hL(s).

If L+ is a landmark then γ |=
∨

v∈U v . So, for all goal states s? it
holds that α(s?) = su, so su is the only abstract goal state. . . .
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Landmarks to Merge-and-Shrink Abstractions (3)

Proof (continued).

As all true variables in s are reachable from s in Π+,
s 6|=

∨
v∈U v and α(s) = sr .

All abstract plans for s must contain a transition from sr to su and
hα(s) is the minimal cost of all such transitions.

Assume that there is a transition from a state s1 with α(s1) = sr
to a state s2 with α(s2) = su by an operator o 6∈ L. Then o+ is
applicable in s1 and leads to a state where a variable from U is
true, contradicting the definition of U.

Therefore all abstract transitions from sr to su are induced by an
operator from L and have cost at least mino∈L cost(o).
So hα(s) ≥ mino∈L cost(o) = hL(s).
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F5.4 Summary
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Summary

I We can use compilability to compare the power of different
classes of admissible heuristics.

I So far we have established that PDB heuristics are
incomparable with landmark heuristics, and

I Merge-and-shrink heuristics strictly dominate landmark
heuristics.
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