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M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 6, 2017 1 / 22

Planning and Optimization
December 6, 2017 — F4. Potential Heuristics & Connections

F4.1 Potential Heuristics

F4.2 Connections

F4.3 Summary
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Motivation

I Operator-counting heuristics solve an LP to compute the
heuristic estimate for a single state.

I Can we also define an entire heuristic function
solving only one LP?

I Axiomatic approach for defining heuristics:
I What should a heuristic look like mathematically?
I Which properties should it have?

I Define a space of interesting heuristics.

I Use optimization to pick a good representative.
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Potential Heuristics

Potential Heuristics: Idea
Heuristic design as an optimization problem:

I Define simple numerical state features f1, . . . , fn.

I Consider heuristics that are linear combinations of features:

h(s) = w1f1(s) + · · ·+ wnfn(s)

with weights (potentials) wi ∈ R
I Find potentials for which h is admissible and well-informed.

Motivation:

I declarative approach to heuristic design

I heuristic very fast to compute if features are
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Features

Definition (feature)

A (state) feature for a planning task is a numerical function
defined on the states of the task: f : S → R.
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Potential Heuristics

Definition (potential heuristic)

A potential heuristic for a set of features F = {f1, . . . , fn}
is a heuristic function h defined as a linear combination
of the features:

h(s) = w1f1(s) + · · ·+ wnfn(s)

with weights (potentials) wi ∈ R.

 cf. evaluation functions for board games like chess
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Atomic Potential Heuristics

Atomic features test if some atom is true in a state:

Definition (atomic feature)

Let X = x be an atom of a FDR planning task.

The atomic feature fX =x is defined as:

fX =x (s) =

{
1 if variable X has value x in state s

0 otherwise

I We only consider atomic potential heuristics,
which are based on the set of all atomic features.

I Example for a task with state variables X and Y :

h(s) = 3fX =a + 1
2 fX =b − 2fX =c + 5

2 fY =d

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 6, 2017 9 / 22

F4. Potential Heuristics & Connections Potential Heuristics

How to Set the Weights?

We want to find good atomic potential heuristics:

I admissible

I consistent

I well-informed

How to achieve this? Linear programming to the rescue!
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Admissible and Consistent Potential Heuristics

Constraints on potentials characterize (= are necessary and
sufficient for) admissible and consistent atomic potential heuristics:

Goal-awareness ∑
goal atoms a

wa = 0

Consistency∑
a consumed

by o

wa −
∑

a produced
by o

wa ≤ cost(o) for all operators o

Remarks:

I assumes transition normal form (not a limitation)

I goal-aware and consistent = admissible and consistent
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Well-Informed Potential Heuristics

How to find a well-informed potential heuristic?

 encode quality metric in the objective function
and use LP solver to find a heuristic maximizing it

Examples:

I maximize heuristic value of a given state (e.g., initial state)

I maximize average heuristic value of all states
(including unreachable ones)

I maximize average heuristic value of some sample states

I minimize estimated search effort
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F4.2 Connections
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Potential and Flow Heuristic

Theorem

For state s, let hmaxpot(s) denote the maximal heuristic value
of all admissible and consistent atomic potential heuristics in s.

Then hmaxpot(s) = hflow(s).

Proof idea: compare dual of hflow(s) LP to potential heuristic
Proof idea: constraints optimized for state s.

If we optimize the potentials for a given state then for this state it
equals the flow heuristic.
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Operator Counting and General Cost Partitioning

Theorem
Combining operator-counting heuristics in one LP

is equivalent to
computing their optimal general cost partitioning.

Proof idea: The linear programs are each others duals.
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Use the Theorem to Combine Heuristics

I Easy way to compute cost partitioning of heuristics
I LP can be more compact (variable elimination)
I No need for one variable per operator and subproblem

I Even better combination of heuristics with IP heuristic
I Considers that operator cannot be used 1.5 times
I But computation is no longer polynomial
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Use the Theorem to Analyze Heuristics

Analyze operator counting heuristics
Example: flow heuristic

1 Group linear constraints into sets of operator-counting
constraints

I One group of flow constraints per variable

2 Figure out what heuristic is computed with just one such set
I Minimizing total cost while respecting flow

in projection to one variable
I Shortest path in projection

3 Your original operator-counting heuristic computes the
optimal general cost partition of those component heuristics

I Flow heuristic = gOCP(atomic projection heuristics)
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Other Examples

What about the rest of our examples?
I Landmark constraints

I gOCP(individual landmark heuristics)

I Post-hoc optimization heuristic
I gOCP(heuristics that spend a minimum cost on relevant ops)
I Also: cost partitioning over atomic projection heuristics

I Operator costs not independent
I Scale with one factor per projection
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F4.3 Summary
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Summary

I The combination into one operator-counting heuristic
corresponds to the computation of the optimal general
cost partitioning for the ingredient heuristics.

I General cost partitioning, operator-counting constraints
and potential heuristics are facets of the same phenomenon.

I Study of each reinforces understanding of the others.

I Potential heuristics can be used as fast admissible
approximations of hflow.

I Generalization beyond hflow: use non-atomic features

I If features are cheap to compute, the heuristic evaluation for
every state is extremely fast.
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