Planning and Optimization F2. Cost Partitioning: Landmarks and Generalization

Malte Helmert and Gabriele Röger

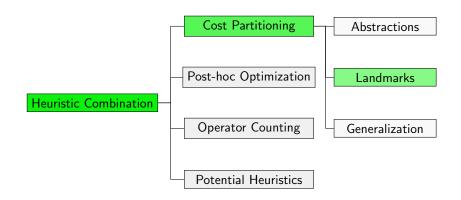
Universität Basel

December 4, 2017

Cost Partitioning for Landmarks

Summary 000000

Content of this Course: Heuristic Combination



Summary 000000

Reminder: Disjunctive Action Landmarks

Disjunctive action landmark

- Set of operators
- Every plan uses at least one of them
- Landmark cost = cost of cheapest operator

Summary 000000

Reminder: Cost Partitioning Heuristic for Landmarks

We have already seen a landmark heuristic based on cost partitioning:

Definition (Uniform Cost Partitioning Heuristic for Landmarks)

Let \mathcal{L} be a set of disjunctive action landmarks.

The uniform cost partitioning heuristic $h^{UCP}(\mathcal{L})$ is defined as

$$h^{UCP}(\mathcal{L}) = \sum_{L \in \mathcal{L}} \min_{o \in L} c'(o)$$
 with

$$c'(o) = cost(o)/|\{L \in \mathcal{L} \mid o \in L\}|.$$

Reminder: Proof Back Then

Theorem (Uniform Cost Partitioning Heuristic is Admissible)

Let \mathcal{L} be a set of disjunctive action landmarks for state s of Π . Then $h^{UCP}(\mathcal{L})$ is an admissible heuristic estimate for s.

Proof.

Let $\pi = \langle o_1, \ldots, o_n \rangle$ be an optimal plan for *s*. For $L \in \mathcal{L}$ define a new cost function $cost_L$ as $cost_L(o) = c'(o)$ if $o \in L$ and $cost_L(o) = 0$ otherwise. Let Π_L be a modified version of Π , where for all operators *o* the cost is replaced with $cost_L(o)$. (...)

 $\sum_{L \in \mathcal{L}} cost_L(o) = \sum_{L \in \mathcal{L}: o \in L} cost(o) / |\{L \in \mathcal{L} \mid o \in L\}| = cost(o)$

Summary 000000

Heuristic is Based on Cost Partitioning

- For disj. action landmark L of state s in task Π', let h_{L,Π'}(s) be the cost of L in Π'. Then h_{L,Π'}(s) is admissible.
- Consider set {L₁,..., L_n} of disj. action landmarks for state s of task Π.
- Use cost partitioning $\langle cost_{L_1}, \dots, cost_{L_n} \rangle$, where

$$cost_{L_i}(o) = egin{cases} cost(o)/|\{L \in \mathcal{L} \mid o \in L\}| & ext{if } o \in L_i \ 0 & ext{otherwise} \end{cases}$$

- Let $\langle \Pi_{L_1}, \ldots, \Pi_{L_n} \rangle$ be the tuple of induced tasks.
- $h(s) = \sum_{i=1}^{n} h_{L_i, \prod_{L_i}}(s)$ is an admissible estimate for s in Π .
- *h* is uniform cost partitioning heuristic for landmarks.

Optimal Cost Partitioning for Landmarks

Can we find a better cost partitioning?

- Use again LP that covers heuristic computation and cost partitioning.
- LP variable Cost_L for cost of landmark L in induced task (corresponds to h_{Li}, Π_{Li})
- Explicit variables for cost partitioning not necessary. Use implicitly cost_L(o) = Cost_L for all o ∈ L and 0 otherwise.

Summary 000000

Optimal Cost Partitioning for Landmarks: LP

Variables

 Cost_L for each disj. action landmark $L \in \mathcal{L}$

Objective

Maximize $\sum_{L \in \mathcal{L}} \mathsf{Cost}_L$

Subject to

$$\sum_{L \in \mathcal{L}: o \in L} \frac{\text{Cost}_{L} \leq cost(o)}{\text{Cost}_{L} \geq 0} \quad \text{for all operators } o$$

Summary 000000

Optimal Cost Partitioning for Landmarks (Dual view)

Variables

Count_o for each operator o

Objective

Minimize $\sum_{o} \text{Count}_{o} \cdot \text{cost}(o)$

Subject to

$$\sum_{o \in L} \mathsf{Count}_o \geq 1$$
 for all landmarks L
 $\mathsf{Count}_o \geq 0$ for all operators o

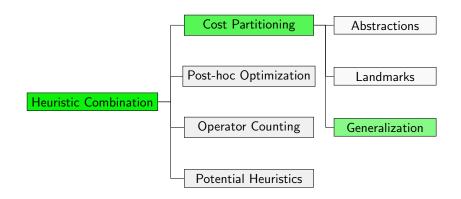
Minimize "plan cost" with all landmarks satisfied.

General Cost Partitioning

General Cost Partitioning

Summary 000000

Content of this Course: Heuristic Combination



Summary 000000

General Cost Partitioning

Cost functions usually non-negative

- We tacitly also required this for task copies
- Makes intuitively sense: original costs are non-negative
- But: not necessary for cost-partitioning!

Summary 000000

General Cost Partitioning

Definition (General Cost Partitioning)

Let Π be a planning task with operators O.

A general cost partitioning for Π is a tuple $\langle cost_1, \ldots, cost_n \rangle$, where

- $cost_i : O \to \mathbb{R}$ for $1 \le i \le n$ and
- $\sum_{i=1}^{n} cost_i(o) \le cost(o)$ for all $o \in O$.

Summary 000000

General Cost Partitioning: Admissibility

Theorem (Sum of Solution Costs is Admissible)

Let Π be a planning task, $\langle cost_1, \ldots, cost_n \rangle$ be a general cost partitioning and $\langle \Pi_1, \ldots, \Pi_n \rangle$ be the tuple of induced tasks.

Then the sum of the solution costs of the induced tasks is an admissible heuristic for Π , i.e., $\sum_{i=1}^{n} h_{\Pi_i}^* \leq h_{\Pi}^*$.

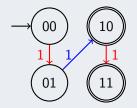
(Proof omitted.)

General Cost Partitioning

Summary 000000

General Cost Partitioning: Example

Example

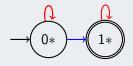


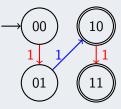
General Cost Partitioning

Summary 000000

General Cost Partitioning: Example

Example



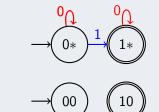


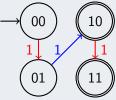
General Cost Partitioning

Summary 000000

General Cost Partitioning: Example

Example





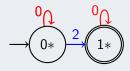
Heuristic value: 0 + 1 = 1

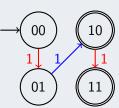
General Cost Partitioning

Summary 000000

General Cost Partitioning: Example

Example





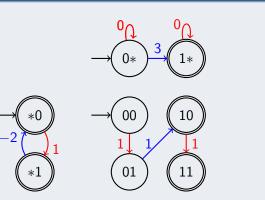
Heuristic value: 0 + 2 = 2

General Cost Partitioning

Summary 000000

General Cost Partitioning: Example

Example



Heuristic value: $-\infty + 3 = -\infty$

Summary 000000

LP for Shortest Path in State Space with Negative Costs

Variables

Distance_s for each state s, GoalDist

Objective

Maximize GoalDist

Subject to

 $\begin{array}{ll} \text{Distance}_{s_{l}} = 0 & \text{for the initial state } s_{l} \\ \text{Distance}_{s'} \leq \text{Distance}_{s} + cost(o) \text{ for all alive transitions } s \xrightarrow{o} s' \\ \text{GoalDist} \leq \text{Distance}_{s_{\star}} & \text{for all goal states } s_{\star} \end{array}$

alive: on any path from initial state to goal state Modification also correct (but unnecessary) for non-negative costs

Summary 000000

General Cost Partitioning: Remarks

- More powerful than non-negative cost partitioning
- Optimal general cost partitioning: omit constraints to non-negative cost variables
 - optimal cost partitioning maximizes objective value
 - removing constraints can only increase heuristic value
- Optimal general cost partitioning is never worse than an optimal non-negative cost partitioning.

Summary •00000

Summary

- We can compute an optimal cost partitioning for a given set of disjunctive action landmarks in polynomial time.
- In constrast to standard (non-negative) cost partitioning, general cost partitioning allows negative operators costs.
- General cost partitioning has the same relevant properties as non-negative cost partitioning but is more powerful.

Literature (1)

References on cost partitioning:

Stefan Edelkamp.

Automated Creation of Pattern Database Search Heuristic. *Proc. MoChArt 2006*, pp. 35–50, 2006. Introduces 0-1 cost partitioning for abstraction heuristics.

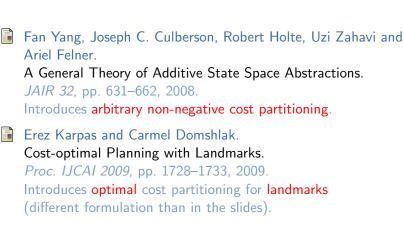
Michael Katz and Carmel Domshlak.

Structural Patterns Heuristics: Basic Idea and Concrete Instance.

ICAPS 2007 HDIP Workshop, 2007.

Introduces arbitrary non-negative cost partitioning.

Literature (2)



Summary 000000

- Emil Keyder, Silvia Richter and Malte Helmert.
 Sound and Complete Landmarks for And/Or Graphs.
 Proc. ECAI 2010, pp. 335–340, 2010.
 Smaller LP for optimal cost partitioning for landmarks.
 - Blai Bonet and Malte Helmert.

Strengthening Landmark Heuristics via Hitting Set. *Proc. ECAI 2010*, pp. 329–334, 2010. Dual LP for optimal cost partitioning for landmarks.

- Michael Katz and Carmel Domshlak.
 Optimal Admissible Composition of Abstraction Heuristics.
 Artificial Intelligence 174 (12–13), pp. 767–798, 2010.
 Introduces optimal cost partitioning for abstraction heuristics.
- Florian Pommerening, Malte Helmert, Gabriele Röger and Jendrik Seipp.

From Non-Negative to General Operator Cost Partitioning. *Proc. AAAI 2015*, pp. 3335–3341, 2015. Introduces general cost partitioning.