Planning and Optimization F1. Cost Partitioning: Definition, Properties, and Abstractions

Malte Helmert and Gabriele Röger

Universität Basel

December 4, 2017

Cost Partitioning

Optimal Cost Partitioning for Abstractions

Summary 00

Content of this Course

Cost Partitioning

Optimal Cost Partitioning for Abstractions

Summary 00

Content of this Course: Heuristic Combination

Exploiting Additivity

- Additivity allows to add up heuristic estimates admissibly. This gives better heuristic estimates than the maximum.
- For example, the canonical heuristic for PDBs sums up where addition is admissible (by an additivity criterion) and takes the maximum otherwise.
- Cost partitioning provides a more general additivity criterion, based on an adaption of the operator costs.

Cost Partitioning

Cost Partitioning

Definition (Cost Partitioning)

Let Π be a planning task with operators O.

A cost partitioning for Π is a tuple $(cost_1, \ldots, cost_n)$, where

• $cost_i: O \rightarrow \mathbb{R}^+_0$ for $1 \le i \le n$ and

•
$$\sum_{i=1}^{n} cost_i(o) \le cost(o)$$
 for all $o \in O$.

The cost partitioning induces a tuple $\langle \Pi_1, \ldots, \Pi_n \rangle$ of planning tasks, where each Π_i is identical to Π except that the cost of each operator o is $cost_i(o)$.

Cost Partitioning: Admissibility (1)

Theorem (Sum of Solution Costs is Admissible)

Let Π be a planning task, $\langle cost_1, \ldots, cost_n \rangle$ be a cost partitioning and $\langle \Pi_1, \ldots, \Pi_n \rangle$ be the tuple of induced tasks.

Then the sum of the solution costs of the induced tasks is an admissible heuristic for Π , i.e., $\sum_{i=1}^{n} h_{\Pi_i}^* \leq h_{\Pi}^*$.

Summary 00

Cost Partitioning: Admissibility (2)

Proof of Theorem.

Let $\pi = \langle o_1, \ldots, o_m \rangle$ be an optimal plan for state *s* of Π . Then

$$\sum_{i=1}^{n} h_{\Pi_{i}}^{*}(s) \leq \sum_{i=1}^{n} \sum_{j=1}^{m} cost_{i}(o_{j}) \qquad (\pi \text{ plan in each } \Pi_{i})$$
$$= \sum_{j=1}^{m} \sum_{i=1}^{n} cost_{i}(o_{j}) \qquad (comm./ass. of sum)$$
$$\leq \sum_{j=1}^{m} cost(o_{j}) \qquad (cost \text{ partitioning})$$
$$= h_{\Pi}^{*}(s) \qquad (\pi \text{ optimal plan in } \Pi)$$

Cost Partitioning Preserves Admissibility

In the rest of the chapter, we write h_{Π} to denote heuristic h evaluated on task Π .

Corollary (Sum of Admissible Estimates is Admissible)

Let Π be a planning task and let $\langle \Pi_1, \ldots, \Pi_n \rangle$ be induced by a cost partitioning.

For admissible heuristics h_1, \ldots, h_n , the sum $h(s) = \sum_{i=1}^n h_{i,\Pi_i}(s)$ is an admissible estimate for s in Π .

Cost Partitioning Preserves Consistency

Theorem (Cost Partitioning Preserves Consistency)

Let Π be a planning task and let $\langle \Pi_1, \ldots, \Pi_n \rangle$ be induced by a cost partitioning $\langle cost_1, \ldots, cost_n \rangle$.

If h_1, \ldots, h_n are consistent heuristics then $h = \sum_{i=1}^n h_{i,\Pi_i}$ is a consistent heuristic for Π .

Proof.

Let o be an operator that is applicable in state s.

$$egin{aligned} h(s) &= \sum_{i=1}^n h_{i,\Pi_i}(s) \leq \sum_{i=1}^n (cost_i(o) + h_{i,\Pi_i}(s\llbracket o
rbracket))) \ &= \sum_{i=1}^n cost_i(o) + \sum_{i=1}^n h_{i,\Pi_i}(s\llbracket o
rbracket) \leq cost(o) + h(s\llbracket o
rbracket)) \end{aligned}$$

Cost Partitioning

Optimal Cost Partitioning for Abstractions

Summary 00

Cost Partitioning: Example

Example

Cost Partitioning

Optimal Cost Partitioning for Abstractions

Summary 00

Cost Partitioning: Example

Example

Cost Partitioning

Optimal Cost Partitioning for Abstractions

Summary 00

Cost Partitioning: Example

Example (No Cost Partitioning)

Heuristic value: $max{2,2} = 2$

Cost Partitioning

Optimal Cost Partitioning for Abstractions

Summary 00

Cost Partitioning: Example

Example (Cost Partitioning 1)

Heuristic value: 1 + 1 = 2

Cost Partitioning

Optimal Cost Partitioning for Abstractions

Summary 00

Cost Partitioning: Example

Example (Cost Partitioning 2)

Heuristic value: 2 + 2 = 4

Cost Partitioning

Optimal Cost Partitioning for Abstractions

Summary 00

Cost Partitioning: Example

Example (Cost Partitioning 3)

Heuristic value: 0 + 0 = 0

Cost Partitioning: Quality

- strategies for defining cost-functions
 - uniform: $cost_i(o) = cost(o)/n$
 - zero-one: full operator cost in one copy, zero in all others
 - ...

Can we find an optimal cost partitioning?

Optimal Cost Partitioning

Optimal Cost Partitioning with LPs

- Use variables for cost of each operator in each task copy
- Express heuristic values with linear constraints
- Maximize sum of heuristic values subject to these constraints

LPs known for

- abstraction heuristics
- Iandmark heuristic

Optimal Cost Partitioning for Abstractions

Cost Partitioning

Optimal Cost Partitioning for Abstractions

Summary 00

Content of this Course: Heuristic Combination

Optimal Cost Partitioning for Abstractions

Abstractions

- Simplified versions of the planning task, e.g. projections
- Cost of optimal abstract plan is admissible estimate

How to express the heuristic value as linear constraints?

Optimal Cost Partitioning for Abstractions

Abstractions

- Simplified versions of the planning task, e.g. projections
- Cost of optimal abstract plan is admissible estimate

How to express the heuristic value as linear constraints? \rightsquigarrow Shortest path problem in abstract transition system

Cost Partitioning

Optimal Cost Partitioning for Abstractions $_{\texttt{OOO} \bullet \texttt{OOOOOO}}$

Summary 00

LP for Shortest Path in State Space

Variables

Distance_s for each state s, GoalDist

Objective

Maximize GoalDist

Subject to

 $Distance_{s_l} = 0 for the initial state s_l$

 $\begin{array}{ll} \text{Distance}_{s'} \leq \text{Distance}_s + cost(o) \text{ for all transitions } s \xrightarrow{o} s'\\ \text{GoalDist} \leq \text{Distance}_{s_\star} & \text{for all goal states } s_\star \end{array}$

Cost Partitioning

Optimal Cost Partitioning for Abstractions ${\scriptstyle 000000000}$

Summary 00

Optimal Cost Partitioning for Abstractions I

Variables

For each abstraction α :

Distance^{α}_s for each abstract state s, cost^{α}_o for each operator o, GoalDist^{α}

Objective

. . .

Maximize $\sum_{\alpha} \text{GoalDist}^{\alpha}$

Cost Partitioning

Optimal Cost Partitioning for Abstractions ${\scriptstyle 0000000000}$

Summary 00

Optimal Cost Partitioning for Abstractions II

Subject to

for all operators o

$$\sum_{lpha} \operatorname{Cost}_{o}^{lpha} \leq \mathit{cost}(o)$$

 $\operatorname{Cost}_{o}^{lpha} \geq 0$

for all abstractions $\boldsymbol{\alpha}$

and for all abstractions $\boldsymbol{\alpha}$

 $\begin{array}{ll} \text{Distance}_{s_{l}}^{\alpha}=0 & \text{for the abstract initial state } s_{l}\\ \text{Distance}_{s'}^{\alpha}\leq\text{Distance}_{s}^{\alpha}+\text{Cost}_{o}^{\alpha} \text{ for all transition } s\xrightarrow{o}s'\\ \text{GoalDist}^{\alpha}\leq\text{Distance}_{s_{\star}}^{\alpha} & \text{for all abstract goal states } s_{\star} \end{array}$

Cost Partitioning 000000000 Optimal Cost Partitioning for Abstractions ${\scriptstyle 0000000000}$

Summary 00

Example (1)

Example

Example (2)

Cost Partitioning

Optimal Cost Partitioning for Abstractions ${\scriptstyle 0000000000}$

Summary 00

$\begin{array}{l} \mathsf{Maximize}\ \mathsf{GoalDist}^1 + \mathsf{GoalDist}^2\ \mathsf{subject}\ \mathsf{to}\\\\ \mathsf{Cost}_{\mathsf{red}}^1 + \mathsf{Cost}_{\mathsf{red}}^2 \leq 2\\ \mathsf{Cost}_{\mathsf{blue}}^1 + \mathsf{Cost}_{\mathsf{blue}}^2 \leq 2\\ \mathsf{Cost}_{\mathsf{red}}^1 \geq 0\\ \mathsf{Cost}_{\mathsf{red}}^2 \geq 0\\ \mathsf{Cost}_{\mathsf{blue}}^1 \geq 0\\ \mathsf{Cost}_{\mathsf{blue}}^2 \geq 0\\ \mathsf{Cost}_{\mathsf{blue}}^2 \geq 0 & \dots \end{array}$

Cost Partitioning

Optimal Cost Partitioning for Abstractions ${\scriptstyle 000000000}$

Summary 00

Example (3)

... and ...

$$\begin{split} \mathsf{Distance}_0^1 &= \mathbf{0} \\ \mathsf{Distance}_0^1 &\leq \mathsf{Distance}_0^1 + \mathsf{Cost}_{\mathsf{red}}^1 \\ \mathsf{Distance}_1^1 &\leq \mathsf{Distance}_0^1 + \mathsf{Cost}_{\mathsf{blue}}^1 \\ \mathsf{Distance}_1^1 &\leq \mathsf{Distance}_1^1 + \mathsf{Cost}_{\mathsf{red}}^1 \\ \mathsf{GoalDist}^1 &\leq \mathsf{Distance}_1^1 \end{split}$$

$$\begin{split} \mathsf{Distance}_0^2 &= \mathbf{0} \\ \mathsf{Distance}_1^2 &\leq \mathsf{Distance}_0^2 + \mathsf{Cost}_{\mathsf{red}}^2 \\ \mathsf{Distance}_0^2 &\leq \mathsf{Distance}_1^2 + \mathsf{Cost}_{\mathsf{blue}}^2 \\ \mathsf{GoalDist}^2 &\leq \mathsf{Distance}_1^2 \end{split}$$

Caution

A word of warning

- optimization for every state gives best-possible cost partitioning
- but takes time

Better heuristic guidance often does not outweigh the overhead.

Summary

Summary

- Cost partitioning allows to admissibly add up estimates of several heuristics.
- This can be better or worse than the best individual heuristic on the original problem, depending on the cost partitioning.
- For some heuristic classes, we know how to determine an optimal cost partitioning, using linear programming.
- Although solving a linear program is possible in polynomial time, the better heuristic guidance often does not outweigh the overhead.