
Planning and Optimization
E8. Flow Heuristic

Malte Helmert and Gabriele Röger

Universität Basel

November 29, 2017

Introduction Flow Heuristic Summary Literature

Introduction

Introduction Flow Heuristic Summary Literature

Content of this Course: Heuristic Types

Heuristic Types

Delete Relaxation

Abstraction

Critical Paths

Landmarks

Network Flows

Introduction Flow Heuristic Summary Literature

Reminder: SAS+ Planning Tasks

For a SAS+ planning task Π = 〈V , I ,O, γ〉:
V is a set of finite-domain state variables,

Each atom has the form v = d with v ∈ V , d ∈ dom(v).

Operator preconditions and the goal formula γ
are conjunctions of atoms.

Operator effects are conjunctions of atomic effects,
i.e., they have the form v1 := d1 ∧ · · · ∧ vn := dn.

Introduction Flow Heuristic Summary Literature

Example Task (1)

One package, two trucks, two locations

Variables:

pos-p with dom(pos-p) = {loc1, loc2, t1, t2}
pos-t-i with dom(pos-t-i) = {loc1, loc2} for i ∈ {1, 2}

The package is at location 1 and the trucks at location 2,

I = {pos-p 7→ loc1, pos-t-1 7→ loc2, pos-t-2 7→ loc2)

The goal is to have the package at location 2 and
truck 1 at location 1.

γ = (pos-p = loc2) ∧ (pos-t-1 = loc1)

Introduction Flow Heuristic Summary Literature

Example Task (2)

Operators: for i , j , k ∈ {1, 2}:

load(ti , locj) = 〈pos-t-i = locj ∧ pos-p = locj ,

pos-p := ti , 1〉
unload(ti , locj) = 〈pos-t-i = locj ∧ pos-p = ti ,

pos-p := locj , 1〉
drive(ti , locj , lock) = 〈pos-t-i = locj ,

pos-t-i := lock , 1〉

Introduction Flow Heuristic Summary Literature

Example Task: Observations

Consider some atoms of the example task:

pos-p = loc1 initially true and must be false in the goal
. at location 1 the package must be loaded
. one time more often than unloaded.

pos-p = loc2 initially false and must be true in the goal
. at location 2 the package must be unloaded
. one time more often than loaded.

pos-p = t1 initially false and must be false in the goal
. same number of load and unload actions for truck 1.

Can we derive a heuristic from this kind of information?

Introduction Flow Heuristic Summary Literature

Flow Heuristic

Introduction Flow Heuristic Summary Literature

Example: Flow Constraints

Let π be some arbitrary plan for the example task and let
#o denote the number of occurrences of operator o in π.
Then the following holds:

pos-p = loc1 initially true and must be false in the goal
. at location 1 the package must be loaded
. one time more often than unloaded.
#load(t1, loc1) + #load(t2, loc1) =
1 + #unload(t1, loc1) + #unload(t2, loc1)

pos-p = t1 initially false and must be false in the goal
. same number of load and unload actions for truck 1.
#unload(t1, loc1) + #unload(t1, loc2) =
#load(t1, loc1) + #load(t1, loc2)

Introduction Flow Heuristic Summary Literature

Network Flow Heuristics: General Idea

Formulate flow constraints for each atom.

These are satisfied by every plan of the task.

The cost of a plan is
∑

o∈O cost(o)#o

The objective value of an integer program that minimizes this
cost subject to the flow constraints is a lower bound on the
plan cost (i.e., an admissible heuristic estimate).

As solving the IP is NP-hard, we solve the LP relaxation
instead.

How do we get the flow constraints?

Introduction Flow Heuristic Summary Literature

How to Derive Flow Constraints?

The constraints formulate how often an atom can be
produced or consumed.

“Produced” (resp. “consumed”) means that the atom is false
(resp. true) before an operator application and true (resp.
false) in the successor state.

For general SAS+ operators, this depends on the state where
the operator is applied: effect v := d only produces v = d
if the operator is applied in a state s with s(v) 6= d .

For general SAS+ tasks, the goal does not have to specify a
value for every variable.

All this makes the definition of flow constraints somewhat
involved and in general such constraints are inequalitites.

Good news: easy for tasks in transition normal form

Introduction Flow Heuristic Summary Literature

Reminder: Transition Normal Form

Definition (Transition Normal Form)

A SAS+ planning task Π = 〈V , I ,O, γ〉
is in transition normal form (TNF) if

for all o ∈ O, vars(pre(o)) = vars(eff(o)), and

vars(γ) = V .

In words, an operator in TNF must mention the same variables
in the precondition and effect, and a goal in TNF must mention
all variables (= specify exactly one goal state).

Introduction Flow Heuristic Summary Literature

TNF for Example Task (1)

The example task is not in transition normal form:

Load and unload operators have preconditions on the position
of some truck but no effect on this variable.

The goal does not specify a value for variable pos-t-2.

Introduction Flow Heuristic Summary Literature

TNF for Example Task (2)

Operators in transition normal form: for i , j , k ∈ {1, 2}:

load(ti , locj) = 〈pos-t-i = locj ∧ pos-p = locj ,

pos-p := ti ∧ pos-t-i := locj , 1〉
unload(ti , locj) = 〈pos-t-i = locj ∧ pos-p = ti ,

pos-p := locj ∧ pos-t-i := locj , 1〉
drive(ti , locj , lock) = 〈pos-t-i = locj ,

pos-t-i := lock , 1〉

Introduction Flow Heuristic Summary Literature

TNF for Example Task (3)

To bring the goal in normal form,

add an additional value u to dom(pos-t-2)

add zero-cost operators
o1 = 〈pos-t-2 = loc1, pos-t-2 := u, 0〉 and
o2 = 〈pos-t-2 = loc2, pos-t-2 := u, 0〉
Add pos-t-2 = u to the goal:
γ = (pos-p = loc2) ∧ (pos-t-1 = loc1) ∧ (pos-t-2 = u)

Introduction Flow Heuristic Summary Literature

Notation

In SAS+ tasks, states are variable assignments,
conditions are conjunctions over atoms, and
effects are conjunctions of atomic effects.

In the following, we use a unifying notation to express
that an atom is true in a state/entailed by a condition/
made true by an effect.

For state s, we write (v = d) ∈ s to express that s(v) = d .

For a conjunction of atoms ϕ, we write (v = d) ∈ ϕ to express
that ϕ has a conjunct v = d (or alternatively ϕ |= v = d).

For effect e, we write (v = d) ∈ e to express that e contains
the atomic effect v := d .

Introduction Flow Heuristic Summary Literature

Flow Constraints (1)

A flow constraint for an atom relates how often it can be produced
to how often it can be consumed.

Let o be an operator in transition normal form. Then:

o produces atom a iff a ∈ eff(o) and a 6∈ pre(o).

o consumes atom a iff a ∈ pre(o) and a 6∈ eff(o).

Otherwise o is neutral wrt. atom a.

 State-independent

Introduction Flow Heuristic Summary Literature

Flow Constraints (2)

A flow constraint for an atom relates how often it can be produced
to how often it can be consumed.

The constraint depends on the current state s and the goal γ.
If γ mentions all variables (as in TNF), the following holds:

If a ∈ s and a ∈ γ then atom a must be equally often
produced and consumed.

Analogously for a 6∈ s and a 6∈ γ.

If a ∈ s and a 6∈ γ then a must be consumed one time more
often than it is produced.

If a 6∈ s and a ∈ γ then a must be produced one time more
often than it is consumed.

Introduction Flow Heuristic Summary Literature

Iverson Bracket

The dependency on the current state and the goal can concisely be
expressed with Iverson brackets:

Definition (Iverson Bracket)

Let P be a logical proposition (= some statement that can be
evaluated to true or false). Then

[P] =

{
1 if P is true

0 if P is false.

Example: [2 6= 3] = 1

Introduction Flow Heuristic Summary Literature

Flow Constraints (3)

Definition (Flow Constraint)

Let Π = 〈V , I ,O, γ〉 be a task in transition normal form.
The flow constraint for atom a in state s is

[a ∈ s] +
∑

o∈O:a∈eff(o)

Counto = [a ∈ γ] +
∑

o∈O:a∈pre(o)

Counto

Counto is an LP variable for the number of occurrences of
operator o.

Neutral operators either appear on both sides or on none.

Introduction Flow Heuristic Summary Literature

Flow Heuristic

Definition (Flow Heuristic)

Let Π = 〈V , I ,O, γ〉 be a SAS+ task in transition normal form and
let A = {(v = d) | v ∈ V , d ∈ dom(v)} be the set of atoms of Π.

The flow heuristic hflow(s) is the objective value of the following
LP or ∞ if the LP is infeasible:

minimize
∑

o∈O cost(o) · Counto subject to

[a ∈ s] +
∑

o∈O:a∈eff(o)

Counto = [a ∈ γ] +
∑

o∈O:a∈pre(o)

Counto for all a ∈ A

Counto ≥ 0 for all o ∈ O

Introduction Flow Heuristic Summary Literature

Flow Heuristic on Example Task

 Blackboard

Introduction Flow Heuristic Summary Literature

Flow Heuristic: Properties (1)

Theorem

The flow heuristic hflow is goal-aware, safe, consistent and
admissible.

Proof.

We prove goal-awareness and consistency, the other properties
follow from these two.

Goal-awareness: If s |= γ then Counto = 0 for all o ∈ O is feasible
and the objective function has value 0. As Counto ≥ 0 for all
variables and operator costs are nonnegative, the objective value
cannot be smaller. . . .

Introduction Flow Heuristic Summary Literature

Flow Heuristic: Properties (2)

Proof (continued).

Consistency: Let o be an operator that is applicable in state s and
let s ′ = sJoK. Consider an optimal feasible vector y′ for the LP for
s ′ and let yo′ denote the value of Counto′ in this vector. Let y be
the vector that assigns Counto the value yo + 1 and all other
variables Counto′ (o ′ 6= o) the value yo′ . We show that y is
feasible for the LP for s.

Let a = (v = d) be an atom. The flow constraint for a in state s is

[a ∈ s] +
∑

o∈O:a∈eff(o)

Counto = [a ∈ γ] +
∑

o∈O:a∈pre(o)

Counto

We consider how the flow constraint for a is affected by a change
from s ′ to s and from y′ to y. . . .

Introduction Flow Heuristic Summary Literature

Flow Heuristic: Properties (3)

Proof (continued).

If v 6∈ vars(pre(o)), the constraint is not affected and stays satisfied
as it is satisfied by y′. Otherwise, we distinguish four cases:

a ∈ pre(o), a 6∈ eff(o): Then a ∈ s and a 6∈ s ′, increasing the
left-hand side by one. Counto only occurs on the right-hand
side and increases by one, so the change is balanced.

a 6∈ pre(o), a ∈ eff(o): Then a 6∈ s and a ∈ s ′, decreasing the
left-hand side by one. Counto only occurs on the left-hand
side and increases by one, so the change is balanced.

a ∈ pre(o), a ∈ eff(o): Then a ∈ s and a ∈ s ′ and Counto

occurs on both sides, so the equation stays balanced.

a 6∈ pre(o), a 6∈ eff(o): Then a 6∈ s and a 6∈ s ′ and Counto

does not occur on either side of the equation.

. . .

Introduction Flow Heuristic Summary Literature

Flow Heuristic: Properties (4)

Proof (continued).

As y ≥ y′ ≥ 0, also the constraints that require the LP variables to
be non-negative are satisfied.

The value of the objective function with y is hflow(s ′) + cost(o).
Since y is feasible for the LP for state s, this is an upper bound on
hflow(s), so in total hflow(s) ≤ hflow(s ′) + cost(o).

Introduction Flow Heuristic Summary Literature

Summary

Introduction Flow Heuristic Summary Literature

Summary

A flow constraint for an atom describes how the number of
producing operator applications is linked to the number of
consuming operator applications.

The flow heuristic computes a lower bound on the cost of
each operator sequence that satisfies these constraints for all
atoms.

The heuristic only considers the number of occurrences of
each operator, but ignores their order.

Introduction Flow Heuristic Summary Literature

Literature

Introduction Flow Heuristic Summary Literature

Literature (1)

References on the flow heuristic:

Menkes van den Briel, J Benton, and Rao Kambhampati.
An LP-based Heuristic for Optimal Planning.
Proc. CP 2007, pp. 651–665, 2007.
Introduces the flow heuristic.

Blai Bonet.
An Admissible Heuristic for SAS+ Planning Obtained from the
State Equation.
Proc. IJCAI 2013, pp. 2268–2274, 2013.
Rediscovery of flow heuristic plus some improvements.

Introduction Flow Heuristic Summary Literature

Literature (2)

Blai Bonet and Menkes van den Briel.
Flow-based Heuristics for Optimal Planning: Landmarks and
Merges.
Proc. ICAPS 2014, pp. 47–55, 2014.
More on improvements.

Florian Pommerening and Malte Helmert.
A Normal Form for Classical Planning Tasks.
Proc. ICAPS 2015, pp. 188–192, 2015.
Formulation for transition normal form.

	Introduction
	Flow Heuristic
	Summary
	Literature

