

Planning and Optimization

E8. Flow Heuristic

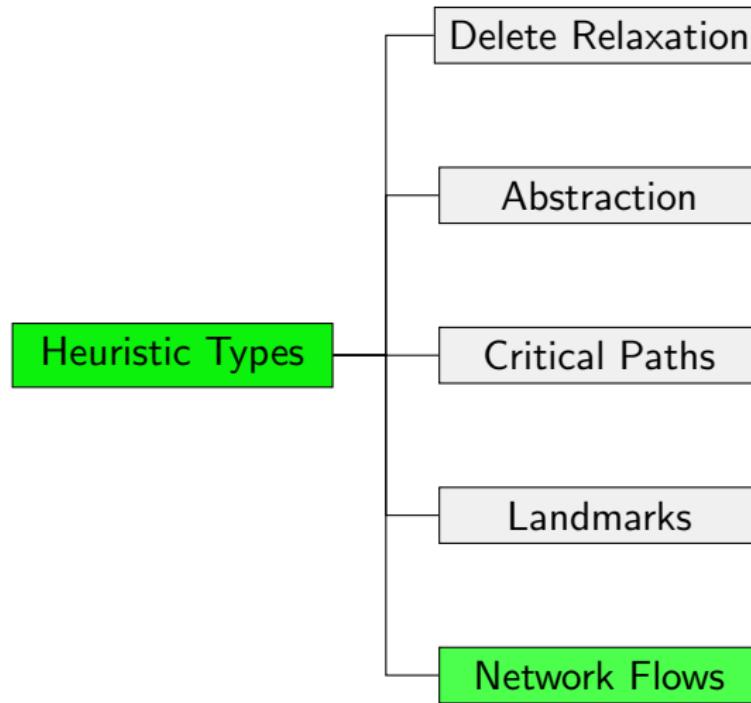
Malte Helmert and Gabriele Röger

Universität Basel

November 29, 2017

Introduction

Content of this Course: Heuristic Types



Reminder: SAS⁺ Planning Tasks

For a SAS^+ planning task $\Pi = \langle V, I, O, \gamma \rangle$:

- V is a set of **finite-domain state variables**,
- Each **atom** has the form $v = d$ with $v \in V, d \in \text{dom}(v)$.
- Operator **preconditions** and the **goal** formula γ are **conjunctions of atoms**.
- Operator **effects** are **conjunctions of atomic effects**, i.e., they have the form $v_1 := d_1 \wedge \cdots \wedge v_n := d_n$.

Example Task (1)

- One package, two trucks, two locations
- Variables:
 - $pos\text{-}p$ with $\text{dom}(pos\text{-}p) = \{loc_1, loc_2, t_1, t_2\}$
 - $pos\text{-}t\text{-}i$ with $\text{dom}(pos\text{-}t\text{-}i) = \{loc_1, loc_2\}$ for $i \in \{1, 2\}$
- The package is at location 1 and the trucks at location 2,
 - $I = \{pos\text{-}p \mapsto loc_1, pos\text{-}t\text{-}1 \mapsto loc_2, pos\text{-}t\text{-}2 \mapsto loc_2\}$
- The goal is to have the package at location 2 and truck 1 at location 1.
 - $\gamma = (pos\text{-}p = loc_2) \wedge (pos\text{-}t\text{-}1 = loc_1)$

Example Task (2)

- Operators: for $i, j, k \in \{1, 2\}$:

$$load(t_i, loc_j) = \langle pos\text{-}t\text{-}i = loc_j \wedge pos\text{-}p = loc_j, pos\text{-}p := t_i, 1 \rangle$$

$$\begin{aligned} unload(t_i, loc_j) = & \langle pos\text{-}t\text{-}i = loc_j \wedge pos\text{-}p = t_i, \\ & pos\text{-}p := loc_j, 1 \rangle \end{aligned}$$

$$drive(t_i, loc_j, loc_k) = \langle pos\text{-}t\text{-}i = loc_j, pos\text{-}t\text{-}i := loc_k, 1 \rangle$$

Example Task: Observations

Consider some atoms of the example task:

- $pos-p = loc_1$ initially true and must be false in the goal
 - ▷ at location 1 the package must be loaded one time more often than unloaded.
- $pos-p = loc_2$ initially false and must be true in the goal
 - ▷ at location 2 the package must be unloaded one time more often than loaded.
- $pos-p = t_1$ initially false and must be false in the goal
 - ▷ same number of load and unload actions for truck 1.

Can we derive a heuristic from this kind of information?

Flow Heuristic

Example: Flow Constraints

Let π be some arbitrary plan for the example task and let $\#o$ denote the **number of occurrences** of operator o in π . Then the following holds:

- $pos-p = loc_1$ initially true and must be false in the goal
 - ▷ at location 1 the package must be loaded one time more often than unloaded.
$$\#load(t_1, loc_1) + \#load(t_2, loc_1) = 1 + \#unload(t_1, loc_1) + \#unload(t_2, loc_1)$$
- $pos-p = t_1$ initially false and must be false in the goal
 - ▷ same number of load and unload actions for truck 1.
$$\#unload(t_1, loc_1) + \#unload(t_1, loc_2) = \#load(t_1, loc_1) + \#load(t_1, loc_2)$$

Network Flow Heuristics: General Idea

- Formulate **flow constraints** for each atom.
- These are satisfied by **every plan** of the task.
- The cost of a plan is $\sum_{o \in O} \text{cost}(o) \# o$
- The objective value of an integer program that minimizes this cost subject to the flow constraints is a lower bound on the plan cost (i.e., an admissible heuristic estimate).
- As solving the IP is NP-hard, we solve the LP relaxation instead.

How do we get the flow constraints?

How to Derive Flow Constraints?

- The constraints formulate how often an atom can be produced or consumed.
- “Produced” (resp. “consumed”) means that the atom is false (resp. true) before an operator application and true (resp. false) in the successor state.
- For general SAS⁺ operators, this depends on the state where the operator is applied: effect $v := d$ only produces $v = d$ if the operator is applied in a state s with $s(v) \neq d$.
- For general SAS⁺ tasks, the goal does not have to specify a value for every variable.
- All this makes the definition of flow constraints somewhat involved and in general such constraints are inequalities.

Good news: easy for tasks in transition normal form

Reminder: Transition Normal Form

Definition (Transition Normal Form)

A SAS⁺ planning task $\Pi = \langle V, I, O, \gamma \rangle$

is in **transition normal form (TNF)** if

- for all $o \in O$, $\text{vars}(\text{pre}(o)) = \text{vars}(\text{eff}(o))$, and
- $\text{vars}(\gamma) = V$.

In words, an **operator** in TNF must mention the same variables in the precondition and effect, and a **goal** in TNF must mention all variables (= specify exactly one goal state).

TNF for Example Task (1)

The example task is not in transition normal form:

- Load and unload operators have preconditions on the position of some truck but no effect on this variable.
- The goal does not specify a value for variable $pos\text{-}t\text{-}2$.

TNF for Example Task (2)

Operators in transition normal form: for $i, j, k \in \{1, 2\}$:

$$\begin{aligned} \text{load}(t_i, \text{loc}_j) = & \langle \text{pos-}t\text{-}i = \text{loc}_j \wedge \text{pos-}p = \text{loc}_j, \\ & \text{pos-}p := t_i \wedge \text{pos-}t\text{-}i := \text{loc}_j, 1 \rangle \end{aligned}$$

$$\begin{aligned} \text{unload}(t_i, \text{loc}_j) = & \langle \text{pos-}t\text{-}i = \text{loc}_j \wedge \text{pos-}p = t_i, \\ & \text{pos-}p := \text{loc}_j \wedge \text{pos-}t\text{-}i := \text{loc}_j, 1 \rangle \end{aligned}$$

$$\begin{aligned} \text{drive}(t_i, \text{loc}_j, \text{loc}_k) = & \langle \text{pos-}t\text{-}i = \text{loc}_j, \\ & \text{pos-}t\text{-}i := \text{loc}_k, 1 \rangle \end{aligned}$$

TNF for Example Task (3)

To bring the goal in normal form,

- add an additional value \mathbf{u} to $\text{dom}(pos-t-2)$
- add zero-cost operators
 - $o_1 = \langle pos-t-2 = loc_1, pos-t-2 := \mathbf{u}, 0 \rangle$ and
 - $o_2 = \langle pos-t-2 = loc_2, pos-t-2 := \mathbf{u}, 0 \rangle$
- Add $pos-t-2 = \mathbf{u}$ to the goal:
 $\gamma = (pos-p = loc_2) \wedge (pos-t-1 = loc_1) \wedge (pos-t-2 = \mathbf{u})$

Notation

- In SAS^+ tasks, states are variable assignments, conditions are conjunctions over atoms, and effects are conjunctions of atomic effects.
- In the following, we use a **unifying notation** to express that an atom is true in a state/entailed by a condition/made true by an effect.
- For **state s** , we write $(v = d) \in s$ to express that $s(v) = d$.
- For a **conjunction of atoms φ** , we write $(v = d) \in \varphi$ to express that φ has a conjunct $v = d$ (or alternatively $\varphi \models v = d$).
- For **effect e** , we write $(v = d) \in e$ to express that e contains the atomic effect $v := d$.

Flow Constraints (1)

A flow constraint for an atom relates how often it can be produced to how often it can be consumed.

Let o be an operator in transition normal form. Then:

- o **produces** atom a iff $a \in \text{eff}(o)$ and $a \notin \text{pre}(o)$.
- o **consumes** atom a iff $a \in \text{pre}(o)$ and $a \notin \text{eff}(o)$.
- Otherwise o is **neutral** wrt. atom a .

~~ State-independent

Flow Constraints (2)

A flow constraint for an atom relates how often it can be produced to how often it can be consumed.

The constraint depends on the current state s and the goal γ .
If γ mentions all variables (as in TNF), the following holds:

- If $a \in s$ and $a \in \gamma$ then atom a must be equally often produced and consumed.
- Analogously for $a \notin s$ and $a \notin \gamma$.
- If $a \in s$ and $a \notin \gamma$ then a must be consumed one time more often than it is produced.
- If $a \notin s$ and $a \in \gamma$ then a must be produced one time more often than it is consumed.

Iverson Bracket

The dependency on the current state and the goal can concisely be expressed with Iverson brackets:

Definition (Iverson Bracket)

Let P be a logical proposition (= some statement that can be evaluated to true or false). Then

$$[P] = \begin{cases} 1 & \text{if } P \text{ is true} \\ 0 & \text{if } P \text{ is false.} \end{cases}$$

Example: $[2 \neq 3] = 1$

Flow Constraints (3)

Definition (Flow Constraint)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a task in transition normal form.

The **flow constraint** for atom a in state s is

$$[a \in s] + \sum_{o \in O: a \in \text{eff}(o)} \text{Count}_o = [a \in \gamma] + \sum_{o \in O: a \in \text{pre}(o)} \text{Count}_o$$

- Count_o is an LP variable for the number of occurrences of operator o .
- Neutral operators either appear on both sides or on none.

Flow Heuristic

Definition (Flow Heuristic)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a SAS⁺ task in transition normal form and let $A = \{ (v = d) \mid v \in V, d \in \text{dom}(v) \}$ be the set of atoms of Π .

The **flow heuristic** $h^{\text{flow}}(s)$ is the objective value of the following LP or ∞ if the LP is infeasible:

minimize $\sum_{o \in O} \text{cost}(o) \cdot \text{Count}_o$ subject to

$$[a \in s] + \sum_{o \in O: a \in \text{eff}(o)} \text{Count}_o = [a \in \gamma] + \sum_{o \in O: a \in \text{pre}(o)} \text{Count}_o \text{ for all } a \in A$$

$$\text{Count}_o \geq 0 \text{ for all } o \in O$$

Flow Heuristic on Example Task

~~> Blackboard

Flow Heuristic: Properties (1)

Theorem

The flow heuristic h^{flow} is goal-aware, safe, consistent and admissible.

Proof.

We prove goal-awareness and consistency, the other properties follow from these two.

Goal-awareness: If $s \models \gamma$ then $\text{Count}_o = 0$ for all $o \in O$ is feasible and the objective function has value 0. As $\text{Count}_o \geq 0$ for all variables and operator costs are nonnegative, the objective value cannot be smaller.

...

Flow Heuristic: Properties (2)

Proof (continued).

Consistency: Let o be an operator that is applicable in state s and let $s' = s[o]$. Consider an optimal feasible vector \mathbf{y}' for the LP for s' and let $y_{o'}$ denote the value of $\text{Count}_{o'}$ in this vector. Let \mathbf{y} be the vector that assigns Count_o the value $y_o + 1$ and all other variables $\text{Count}_{o'}$ ($o' \neq o$) the value $y_{o'}$. We show that \mathbf{y} is feasible for the LP for s .

Let $a = (v = d)$ be an atom. The flow constraint for a in state s is

$$[a \in s] + \sum_{o \in O: a \in \text{eff}(o)} \text{Count}_o = [a \in \gamma] + \sum_{o \in O: a \in \text{pre}(o)} \text{Count}_o$$

We consider how the flow constraint for a is affected by a change from s' to s and from \mathbf{y}' to \mathbf{y} .

...

Flow Heuristic: Properties (3)

Proof (continued).

If $v \notin \text{vars}(\text{pre}(o))$, the constraint is not affected and stays satisfied as it is satisfied by \mathbf{y}' . Otherwise, we distinguish four cases:

- $a \in \text{pre}(o), a \notin \text{eff}(o)$: Then $a \in s$ and $a \notin s'$, increasing the left-hand side by one. Count_o only occurs on the right-hand side and increases by one, so the change is balanced.
- $a \notin \text{pre}(o), a \in \text{eff}(o)$: Then $a \notin s$ and $a \in s'$, decreasing the left-hand side by one. Count_o only occurs on the left-hand side and increases by one, so the change is balanced.
- $a \in \text{pre}(o), a \in \text{eff}(o)$: Then $a \in s$ and $a \in s'$ and Count_o occurs on both sides, so the equation stays balanced.
- $a \notin \text{pre}(o), a \notin \text{eff}(o)$: Then $a \notin s$ and $a \notin s'$ and Count_o does not occur on either side of the equation.

Flow Heuristic: Properties (4)

Proof (continued).

As $\mathbf{y} \geq \mathbf{y}' \geq \mathbf{0}$, also the constraints that require the LP variables to be non-negative are satisfied.

The value of the objective function with \mathbf{y} is $h^{\text{flow}}(s') + \text{cost}(o)$.

Since \mathbf{y} is feasible for the LP for state s , this is an upper bound on $h^{\text{flow}}(s)$, so in total $h^{\text{flow}}(s) \leq h^{\text{flow}}(s') + \text{cost}(o)$. □

Summary

Summary

- A flow constraint for an atom describes how the number of producing operator applications is linked to the number of consuming operator applications.
- The flow heuristic computes a lower bound on the cost of each operator sequence that satisfies these constraints for all atoms.
- The heuristic only considers the number of occurrences of each operator, but ignores their order.

Introduction
oooooo

Flow Heuristic
oooooooooooooooooooo

Summary
oo

Literature
●oo

Literature

Literature (1)

References on the flow heuristic:

- Menkes van den Briel, J Benton, and Rao Kambhampati.
An LP-based Heuristic for Optimal Planning.
Proc. CP 2007, pp. 651–665, 2007.
Introduces the flow heuristic.
- Blai Bonet.
An Admissible Heuristic for SAS+ Planning Obtained from the State Equation.
Proc. IJCAI 2013, pp. 2268–2274, 2013.
Rediscovery of flow heuristic plus some **improvements**.

Literature (2)

Blai Bonet and Menkes van den Briel.

Flow-based Heuristics for Optimal Planning: Landmarks and Merges.

Proc. ICAPS 2014, pp. 47–55, 2014.

More on **improvements**.

Florian Pommerening and Malte Helmert.

A Normal Form for Classical Planning Tasks.

Proc. ICAPS 2015, pp. 188–192, 2015.

Formulation for **transition normal form**.