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Reminder: SAS™ Planning Tasks

For a SAS™ planning task M= (V, I, 0,):
@ V is a set of finite-domain state variables,
e Each atom has the form v = d with v € V,d € dom(v).

@ Operator preconditions and the goal formula ~
are conjunctions of atoms.

Operator effects are conjunctions of atomic effects,
i.e., they have the form vy :=di A--- A v, :=d,.
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Example Task (1)

@ One package, two trucks, two locations

o Variables:
e pos-p with dom(pos-p) = {locy, locy, t1, to}
o pos-t-i with dom(pos-t-i) = {locy, loc, } for i € {1,2}

@ The package is at location 1 and the trucks at location 2,
o | ={pos-p+ locy, pos-t-1 — locy, pos-t-2 +— locy)

@ The goal is to have the package at location 2 and

truck 1 at location 1.

o v = (pos-p = locy) A (pos-t-1 = locy)
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Example Task (2)

e Operators: for i,j, k € {1,2}:

load(t;, locj) = (pos-t-i = locj A\ pos-p = locj,
pos-p := tj, 1)
unload(t;, locj) = (pos-t-i = locj \ pos-p = t;,
pos-p := locj, 1)
drive(t;, locj, locy) = (pos-t-i = loc;,

pos-t-i := locy, 1)
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Example Task: Observations

Consider some atoms of the example task:

@ pos-p = locy initially true and must be false in the goal
> at location 1 the package must be loaded
one time more often than unloaded.

@ pos-p = locy initially false and must be true in the goal
> at location 2 the package must be unloaded
one time more often than loaded.

@ pos-p = ty initially false and must be false in the goal
> same number of load and unload actions for truck 1.

Can we derive a heuristic from this kind of information?
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Example: Flow Constraints

Let m be some arbitrary plan for the example task and let
#o0 denote the number of occurrences of operator o in 7.
Then the following holds:

@ pos-p = locy initially true and must be false in the goal
> at location 1 the package must be loaded
one time more often than unloaded.
#load(ty, loc1) + #load(tz, loc1) =
1+ #unload(t, locy) + #unload(t,, locy)

@ pos-p = tp initially false and must be false in the goal
> same number of load and unload actions for truck 1.
#unload(ty, locy) + #unload(ty, locy) =
#load(ty, locy) + #load(t1, locy)
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Network Flow Heuristics: General Idea

Formulate flow constraints for each atom.
These are satisfied by every plan of the task.
The cost of a plan is ) cost(o)#o

The objective value of an integer program that minimizes this
cost subject to the flow constraints is a lower bound on the
plan cost (i.e., an admissible heuristic estimate).

As solving the IP is NP-hard, we solve the LP relaxation
instead.

How do we get the flow constraints?
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How to Derive Flow Constraints?

@ The constraints formulate how often an atom can be
produced or consumed.

e “Produced” (resp. “consumed”) means that the atom is false
(resp. true) before an operator application and true (resp.
false) in the successor state.

o For general SAS™ operators, this depends on the state where
the operator is applied: effect v := d only produces v = d
if the operator is applied in a state s with s(v) # d.

o For general SAS™ tasks, the goal does not have to specify a
value for every variable.

@ All this makes the definition of flow constraints somewhat
involved and in general such constraints are inequalitites.

Good news: easy for tasks in transition normal form
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Reminder: Transition Normal Form

Definition (Transition Normal Form)

A SAS™T planning task M = (V,1,0,~)

is in transition normal form (TNF) if
e for all o € O, vars(pre(o)) = vars(eff0)), and
e vars(vy) = V.

In words, an operator in TNF must mention the same variables
in the precondition and effect, and a goal in TNF must mention
all variables (= specify exactly one goal state).
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TNF for Example Task (1)

The example task is not in transition normal form:

@ Load and unload operators have preconditions on the position
of some truck but no effect on this variable.

@ The goal does not specify a value for variable pos-t-2.
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TNF for Example Task (2)

Operators in transition normal form: for i, j, k € {1,2}:

load(t;, locj) = (pos-t-i = locj A\ pos-p = log;j,
pos-p = t; \ pos-t-i 1= locj, 1)
unload(t;, locj) = (pos-t-i = locj \ pos-p = t;,
pos-p := locj \ pos-t-i := locj, 1)
drive(t;, locj, locy) = (pos-t-i = loc;,
pos-t-i := locy, 1)
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TNF for Example Task (3)

To bring the goal in normal form,
@ add an additional value u to dom(pos-t-2)

@ add zero-cost operators
o1 = (pos-t-2 = locy, pos-t-2 := u,0) and
0p = (pos-t-2 = locy, pos-t-2 := u, 0)
@ Add pos-t-2 = u to the goal:
v = (pos-p = locy) A (pos-t-1 = locy) A (pos-t-2 = u)
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Notation

@ In SAS™ tasks, states are variable assignments,
conditions are conjunctions over atoms, and
effects are conjunctions of atomic effects.

@ In the following, we use a unifying notation to express
that an atom is true in a state/entailed by a condition/
made true by an effect.

e For state s, we write (v = d) € s to express that s(v) = d.

e For a conjunction of atoms ¢, we write (v = d) € ¢ to express
that ¢ has a conjunct v = d (or alternatively ¢ = v = d).

o For effect e, we write (v = d) € e to express that e contains
the atomic effect v := d.
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Flow Constraints (1)

A flow constraint for an atom relates how often it can be produced
to how often it can be consumed.

Let o be an operator in transition normal form. Then:
@ o produces atom a iff a € eff{o) and a & pre(o).
@ o consumes atom a iff a € pre(o) and a & eff o).

@ Otherwise o is neutral wrt. atom a.

~ State-independent
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Flow Constraints (2)

A flow constraint for an atom relates how often it can be produced
to how often it can be consumed.

The constraint depends on the current state s and the goal ~.
If v mentions all variables (as in TNF), the following holds:

o If a€ s and a € «y then atom a must be equally often
produced and consumed.

@ Analogously for a¢ s and a & ~.

o If a€ s and a ¢~ then a must be consumed one time more
often than it is produced.

o If a¢ s and a €  then a must be produced one time more
often than it is consumed.
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Iverson Bracket

The dependency on the current state and the goal can concisely be
expressed with Iverson brackets:

Definition (lverson Bracket)

Let P be a logical proposition (= some statement that can be
evaluated to true or false). Then

1 if Pis true
[Pl = o
0 if P is false.

Example: 2#3] =1
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Flow Constraints (3)

Definition (Flow Constraint)

Let M= (V,I,O,~) be a task in transition normal form.
The flow constraint for atom a in state s is

[a€s]+ Z Count, =[a €] + Z Count,
o€ 0:aceff(0) o€0:acpre(o)

@ Count, is an LP variable for the number of occurrences of
operator o.

@ Neutral operators either appear on both sides or on none.
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Flow Heuristic

Definition (Flow Heuristic)

Let M= (V,I,0,v) be a SAS™ task in transition normal form and
let A={(v=4d)|veV,de dom(v)} be the set of atoms of I.

The flow heuristic hfl*¥(s) is the objective value of the following
LP or oo if the LP is infeasible:

minimize ) cost(o) - Count,  subject to

[acs]+ > Counto=[a€y]+ > Count, forallac A
o€ 0:aceff(0) o€0:acpre(o)

Count, >0 foralloe O
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Flow Heuristic on Example Task

~ Blackboard
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Flow Heuristic: Properties (1)

The flow heuristic h® is goal-aware, safe, consistent and
admissible.

Proof.

We prove goal-awareness and consistency, the other properties
follow from these two.

Goal-awareness: If s =+ then Count, =0 for all 0 € O is feasible
and the objective function has value 0. As Count, > 0 for all
variables and operator costs are nonnegative, the objective value
cannot be smaller.
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Flow Heuristic: Properties (2)

Proof (continued).

Consistency: Let o be an operator that is applicable in state s and
let s' = s[o]. Consider an optimal feasible vector y’ for the LP for
s’ and let y,s denote the value of Count, in this vector. Let y be
the vector that assigns Count, the value y, + 1 and all other
variables Count,s (o’ # o) the value y,. We show that y is
feasible for the LP for s.

Let a = (v = d) be an atom. The flow constraint for a in state s is

[a€s]+ Z Count, = [a € 7] + Z Count,
o€ 0:aceff0) o€ 0:acpre(o)

We consider how the flow constraint for a is affected by a change
from s’ to s and from y’ to y.
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Flow Heuristic: Properties (3)

Proof (continued).

If v & vars(pre(o)), the constraint is not affected and stays satisfied
as it is satisfied by y’. Otherwise, we distinguish four cases:
@ a € pre(o),a ¢ eff(o): Then a € s and a & s, increasing the
left-hand side by one. Count, only occurs on the right-hand
side and increases by one, so the change is balanced.

@ a¢ pre(o),a € eff(0o): Then a ¢ s and a € s, decreasing the
left-hand side by one. Count, only occurs on the left-hand
side and increases by one, so the change is balanced.

@ a€ pre(o),a € effo): Then a € s and a € s’ and Count,
occurs on both sides, so the equation stays balanced.

@ a¢ pre(o),ad effo): Then a¢ s and a ¢ s’ and Count,
does not occur on either side of the equation.
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Flow Heuristic: Properties (4)

Proof (continued).

Asy >y >0, also the constraints that require the LP variables to
be non-negative are satisfied.

The value of the objective function with y is hf®¥(s) + cost(o).
Since y is feasible for the LP for state s, this is an upper bound on
hflow(s), so in total hf1o¥(s) < hflov(s') 4 cost(o). O

w
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Summary

@ A flow constraint for an atom describes how the number of
producing operator applications is linked to the number of
consuming operator applications.

@ The flow heuristic computes a lower bound on the cost of
each operator sequence that satisfies these constraints for all
atoms.

@ The heuristic only considers the number of occurrences of
each operator, but ignores their order.



Literature



Literature
oeo

Literature (1)

References on the flow heuristic:

@ Menkes van den Briel, J Benton, and Rao Kambhampati.
An LP-based Heuristic for Optimal Planning.
Proc. CP 2007, pp. 651-665, 2007.
Introduces the flow heuristic.

[ Blai Bonet.
An Admissible Heuristic for SAS+ Planning Obtained from the
State Equation.
Proc. I1JCAI 2013, pp. 2268-2274, 2013.
Rediscovery of flow heuristic plus some improvements.
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@ Blai Bonet and Menkes van den Briel.
Flow-based Heuristics for Optimal Planning: Landmarks and
Merges.
Proc. ICAPS 2014, pp. 47-55, 2014.
More on improvements.

@ Florian Pommerening and Malte Helmert.
A Normal Form for Classical Planning Tasks.
Proc. ICAPS 2015, pp. 188-192, 2015.
Formulation for transition normal form.
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