Planning and Optimization
E8. Flow Heuristic

Malte Helmert and Gabriele Roger

Universitat Basel

November 29, 2017

Introduction

Introduction
0@0000

Content of this Course: Heuristic Types

—| Delete Relaxation |

—| Abstraction |

_——| Critical Paths |

—| Landmarks |

—| Network Flows |

Introduction
[e]e] Yolole}

Reminder: SAS™ Planning Tasks

For a SAS™ planning task M= (V, I, 0,):
@ V is a set of finite-domain state variables,
e Each atom has the form v = d with v € V,d € dom(v).

@ Operator preconditions and the goal formula ~
are conjunctions of atoms.

Operator effects are conjunctions of atomic effects,
i.e., they have the form vy :=di A--- A v, :=d,.

Introduction
[e]eleY Tole}

Example Task (1)

@ One package, two trucks, two locations

o Variables:
e pos-p with dom(pos-p) = {locy, locy, t1, to}
o pos-t-i with dom(pos-t-i) = {locy, loc, } for i € {1,2}

@ The package is at location 1 and the trucks at location 2,
o | ={pos-p+ locy, pos-t-1 — locy, pos-t-2 +— locy)

@ The goal is to have the package at location 2 and

truck 1 at location 1.

o v = (pos-p = locy) A (pos-t-1 = locy)

Introduction
0000e0

Example Task (2)

e Operators: for i,j, k € {1,2}:

load(t;, locj) = (pos-t-i = locj A\ pos-p = locj,
pos-p := tj, 1)
unload(t;, locj) = (pos-t-i = locj \ pos-p = t;,
pos-p := locj, 1)
drive(t;, locj, locy) = (pos-t-i = loc;,

pos-t-i := locy, 1)

Introduction
00000e

Example Task: Observations

Consider some atoms of the example task:

@ pos-p = locy initially true and must be false in the goal
> at location 1 the package must be loaded
one time more often than unloaded.

@ pos-p = locy initially false and must be true in the goal
> at location 2 the package must be unloaded
one time more often than loaded.

@ pos-p = ty initially false and must be false in the goal
> same number of load and unload actions for truck 1.

Can we derive a heuristic from this kind of information?

Flow Heuristic

Flow Heuristic
0®00000000000000000

Example: Flow Constraints

Let m be some arbitrary plan for the example task and let
#o0 denote the number of occurrences of operator o in 7.
Then the following holds:

@ pos-p = locy initially true and must be false in the goal
> at location 1 the package must be loaded
one time more often than unloaded.
#load(ty, loc1) + #load(tz, loc1) =
1+ #unload(t, locy) + #unload(t,, locy)

@ pos-p = tp initially false and must be false in the goal
> same number of load and unload actions for truck 1.
#unload(ty, locy) + #unload(ty, locy) =
#load(ty, locy) + #load(t1, locy)

Flow Heuristic
00®0000000000000000

Network Flow Heuristics: General Idea

Formulate flow constraints for each atom.
These are satisfied by every plan of the task.
The cost of a plan is) cost(o)#o

The objective value of an integer program that minimizes this
cost subject to the flow constraints is a lower bound on the
plan cost (i.e., an admissible heuristic estimate).

As solving the IP is NP-hard, we solve the LP relaxation
instead.

How do we get the flow constraints?

Flow Heuristic
000®000000000000000

How to Derive Flow Constraints?

@ The constraints formulate how often an atom can be
produced or consumed.

e “Produced” (resp. “consumed”) means that the atom is false
(resp. true) before an operator application and true (resp.
false) in the successor state.

o For general SAS™ operators, this depends on the state where
the operator is applied: effect v := d only produces v = d
if the operator is applied in a state s with s(v) # d.

o For general SAS™ tasks, the goal does not have to specify a
value for every variable.

@ All this makes the definition of flow constraints somewhat
involved and in general such constraints are inequalitites.

Good news: easy for tasks in transition normal form

Flow Heuristic
0000®00000000000000

Reminder: Transition Normal Form

Definition (Transition Normal Form)

A SAS™T planning task M = (V,1,0,~)

is in transition normal form (TNF) if
e for all o € O, vars(pre(o)) = vars(eff0)), and
e vars(vy) = V.

In words, an operator in TNF must mention the same variables
in the precondition and effect, and a goal in TNF must mention
all variables (= specify exactly one goal state).

Flow Heuristic
00000®0000000000000

TNF for Example Task (1)

The example task is not in transition normal form:

@ Load and unload operators have preconditions on the position
of some truck but no effect on this variable.

@ The goal does not specify a value for variable pos-t-2.

Flow Heuristic
000000@®000000000000

TNF for Example Task (2)

Operators in transition normal form: for i, j, k € {1,2}:

load(t;, locj) = (pos-t-i = locj A\ pos-p = log;j,
pos-p = t; \ pos-t-i 1= locj, 1)
unload(t;, locj) = (pos-t-i = locj \ pos-p = t;,
pos-p := locj \ pos-t-i := locj, 1)
drive(t;, locj, locy) = (pos-t-i = loc;,
pos-t-i := locy, 1)

Flow Heuristic
0000000e00000000000

TNF for Example Task (3)

To bring the goal in normal form,
@ add an additional value u to dom(pos-t-2)

@ add zero-cost operators
o1 = (pos-t-2 = locy, pos-t-2 := u,0) and
0p = (pos-t-2 = locy, pos-t-2 := u, 0)
@ Add pos-t-2 = u to the goal:
v = (pos-p = locy) A (pos-t-1 = locy) A (pos-t-2 = u)

Flow Heuristic
00000000e0000000000

Notation

@ In SAS™ tasks, states are variable assignments,
conditions are conjunctions over atoms, and
effects are conjunctions of atomic effects.

@ In the following, we use a unifying notation to express
that an atom is true in a state/entailed by a condition/
made true by an effect.

e For state s, we write (v = d) € s to express that s(v) = d.

e For a conjunction of atoms ¢, we write (v = d) € ¢ to express
that ¢ has a conjunct v = d (or alternatively ¢ = v = d).

o For effect e, we write (v = d) € e to express that e contains
the atomic effect v := d.

Flow Heuristic
000000000e000000000

Flow Constraints (1)

A flow constraint for an atom relates how often it can be produced
to how often it can be consumed.

Let o be an operator in transition normal form. Then:
@ o produces atom a iff a € eff{o) and a & pre(o).
@ o consumes atom a iff a € pre(o) and a & eff o).

@ Otherwise o is neutral wrt. atom a.

~ State-independent

Flow Heuristic
0000000000®00000000

Flow Constraints (2)

A flow constraint for an atom relates how often it can be produced
to how often it can be consumed.

The constraint depends on the current state s and the goal ~.
If v mentions all variables (as in TNF), the following holds:

o If a€ s and a € «y then atom a must be equally often
produced and consumed.

@ Analogously for a¢ s and a & ~.

o If a€ s and a ¢~ then a must be consumed one time more
often than it is produced.

o If a¢ s and a € then a must be produced one time more
often than it is consumed.

Flow Heuristic
00000000000e0000000

Iverson Bracket

The dependency on the current state and the goal can concisely be
expressed with Iverson brackets:

Definition (lverson Bracket)

Let P be a logical proposition (= some statement that can be
evaluated to true or false). Then

1 if Pis true
[Pl = o
0 if P is false.

Example: 2#3] =1

Flow Heuristic
000000000000e000000

Flow Constraints (3)

Definition (Flow Constraint)

Let M= (V,I,O,~) be a task in transition normal form.
The flow constraint for atom a in state s is

[a€s]+ Z Count, =[a €] + Z Count,
o€ 0:aceff(0) o€0:acpre(o)

@ Count, is an LP variable for the number of occurrences of
operator o.

@ Neutral operators either appear on both sides or on none.

Flow Heuristic
0000000000000e00000

Flow Heuristic

Definition (Flow Heuristic)

Let M= (V,I,0,v) be a SAS™ task in transition normal form and
let A={(v=4d)|veV,de dom(v)} be the set of atoms of I.

The flow heuristic hfl*¥(s) is the objective value of the following
LP or oo if the LP is infeasible:

minimize) cost(o) - Count, subject to

[acs]+ > Counto=[a€y]+ > Count, forallac A
o€ 0:aceff(0) o€0:acpre(o)

Count, >0 foralloe O

Flow Heuristic
0000000000000080000

Flow Heuristic on Example Task

~ Blackboard

Flow Heuristic
000000000000000e000

Flow Heuristic: Properties (1)

The flow heuristic h® is goal-aware, safe, consistent and
admissible.

Proof.

We prove goal-awareness and consistency, the other properties
follow from these two.

Goal-awareness: If s =+ then Count, =0 for all 0 € O is feasible
and the objective function has value 0. As Count, > 0 for all
variables and operator costs are nonnegative, the objective value
cannot be smaller.

Flow Heuristic
0000000000000000e00

Flow Heuristic: Properties (2)

Proof (continued).

Consistency: Let o be an operator that is applicable in state s and
let s' = s[o]. Consider an optimal feasible vector y’ for the LP for
s’ and let y,s denote the value of Count, in this vector. Let y be
the vector that assigns Count, the value y, + 1 and all other
variables Count,s (o’ # o) the value y,. We show that y is
feasible for the LP for s.

Let a = (v = d) be an atom. The flow constraint for a in state s is

[a€s]+ Z Count, = [a € 7] + Z Count,
o€ 0:aceff0) o€ 0:acpre(o)

We consider how the flow constraint for a is affected by a change
from s’ to s and from y’ to y.

Flow Heuristic Summary
0000000000000 0000e0 00

Flow Heuristic: Properties (3)

Proof (continued).

If v & vars(pre(o)), the constraint is not affected and stays satisfied
as it is satisfied by y’. Otherwise, we distinguish four cases:
@ a € pre(o),a ¢ eff(o): Then a € s and a & s, increasing the
left-hand side by one. Count, only occurs on the right-hand
side and increases by one, so the change is balanced.

@ a¢ pre(o),a € eff(0o): Then a ¢ s and a € s, decreasing the
left-hand side by one. Count, only occurs on the left-hand
side and increases by one, so the change is balanced.

@ a€ pre(o),a € effo): Then a € s and a € s’ and Count,
occurs on both sides, so the equation stays balanced.

@ a¢ pre(o),ad effo): Then a¢ s and a ¢ s’ and Count,
does not occur on either side of the equation.

Flow Heuristic

0000000000000 00000e

Flow Heuristic: Properties (4)

Proof (continued).

Asy >y >0, also the constraints that require the LP variables to
be non-negative are satisfied.

The value of the objective function with y is hf®¥(s) + cost(o).
Since y is feasible for the LP for state s, this is an upper bound on
hflow(s), so in total hf1o¥(s) < hflov(s') 4 cost(o). O

w

Summary

Summary
oce

Summary

@ A flow constraint for an atom describes how the number of
producing operator applications is linked to the number of
consuming operator applications.

@ The flow heuristic computes a lower bound on the cost of
each operator sequence that satisfies these constraints for all
atoms.

@ The heuristic only considers the number of occurrences of
each operator, but ignores their order.

Literature

Literature
oeo

Literature (1)

References on the flow heuristic:

@ Menkes van den Briel, J Benton, and Rao Kambhampati.
An LP-based Heuristic for Optimal Planning.
Proc. CP 2007, pp. 651-665, 2007.
Introduces the flow heuristic.

[Blai Bonet.
An Admissible Heuristic for SAS+ Planning Obtained from the
State Equation.
Proc. I1JCAI 2013, pp. 2268-2274, 2013.
Rediscovery of flow heuristic plus some improvements.

Literature
ooe

Literature (2)

@ Blai Bonet and Menkes van den Briel.
Flow-based Heuristics for Optimal Planning: Landmarks and
Merges.
Proc. ICAPS 2014, pp. 47-55, 2014.
More on improvements.

@ Florian Pommerening and Malte Helmert.
A Normal Form for Classical Planning Tasks.
Proc. ICAPS 2015, pp. 188-192, 2015.
Formulation for transition normal form.

	Introduction
	Flow Heuristic
	Summary
	Literature

