Planning and Optimization

E4. Landmarks: Cut Landmarks & LM-cut Heuristic

Malte Helmert and Gabriele Röger

Universität Basel

November 22, 2017

M. Helmert, G. Röger (Universität Basel)

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 22, 2017 1 / 32

November 22, 2017

Planning and Optimization

November 22, 2017 — E4. Landmarks: Cut Landmarks & LM-cut Heuristic

E4.1 Normal Form

E4.2 Cut Landmarks

E4.3 The LM-Cut Heuristic

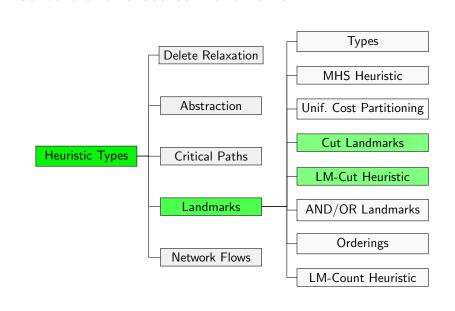
E4.4 Summary

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 22, 2017 2 / 32

Content of this Course: Landmarks



Planning and Optimization

Roadmap for this Chapter

- ► We first introduce a new normal form for delete-free STRIPS tasks that simplifies later definitions.
- ► We then present a method that computes disjunctive action landmarks for such tasks.
- ► We conclude with the LM-cut heuristic that builds on this method.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 22, 2017

4 / 3

E4.1 Normal Form

Normal Form

E4. Landmarks: Cut Landmarks & LM-cut Heuristic

Normal Form

Delete-Free STRIPS Planning Task in Normal Form (1)

In this chapter, we only consider delete-free STRIPS tasks in a new normal form:

Definition (Normal Form for Delete-free STRIPS)

A delete-free STRIPS planning task $\langle V, I, O, G \rangle$ (in set representation) is in normal form if

- ▶ I consists of exactly one element i: $I = \{i\}$
- ▶ G consists of exactly one element g: $G = \{g\}$
- ▶ Every action has at least one precondition.

Every delete-free STRIPS task can easily be transformed into an analogous task in normal form. (How?)

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 22, 2017 5 /

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 22, 2017 6

- / --

E4. Landmarks: Cut Landmarks & LM-cut Heuristic

Normal Form

Delete-Free STRIPS Planning Task in Normal Form (2)

- ▶ In the following, we assume tasks in normal form.
- ▶ Providing *O* suffices to describe the overall task:
 - ightharpoonup V are the variables mentioned in the operators in O.
 - ▶ always $I = \{i\}$ and $G = \{g\}$
- ▶ In the following, we only provide *O* for the description of the task.
- ▶ We write operator $o = \langle pre(o), add(o), \emptyset, cost(o) \rangle$ as $\langle pre(o) \rightarrow add(o) \rangle_{cost(o)}$, omitting braces for sets.

E4. Landmarks: Cut Landmarks & LM-cut Heuristic

Normal Form

Example: Delete-Free Planning Task in Normal Form

Example

Operators:

$$\bullet o_1 = \langle i \to x, y \rangle_3$$

$$\bullet o_4 = \langle x, y, z \to g \rangle_0$$

optimal solution to reach $\{g\}$ from $\{i\}$:

ightharpoonup plan: o_1, o_2, o_4

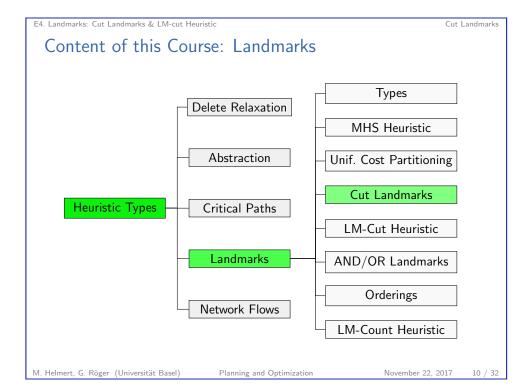
 $ightharpoonup cost: 3+4+0=7 \quad (=h^+(\{i\}) \text{ because plan is optimal})$

E4.2 Cut Landmarks

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 22, 2017 9 / 32



E4. Landmarks: Cut Landmarks & LM-cut Heuristic

Cut Landmarks

Cut Landmarks

Justification Graphs

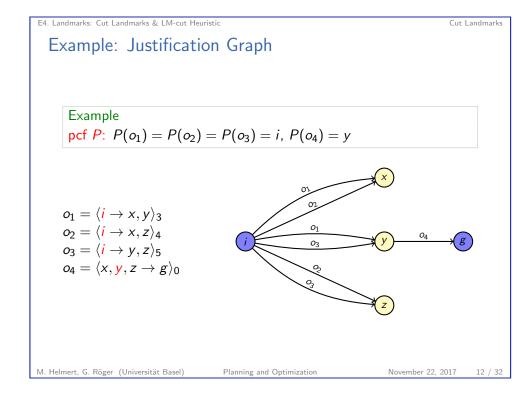
Definition (Precondition Choice Function)

A precondition choice function (pcf) $P: O \rightarrow V$ for a delete-free STRIPS task $\Pi = \langle V, \{i\}, O, \{g\} \rangle$ in normal form maps each operator to one of its preconditions (i.e. $P(o) \in pre(o)$ for all $o \in O$).

Definition (Justification Graphs)

Let P be a pcf for $\langle V, \{i\}, O, \{g\} \rangle$. The justification graph for P is the directed, edge-labeled graph $J = \langle V, E \rangle$, where

- \triangleright the vertices are the variables from V, and
- ▶ E contains an edge $P(o) \xrightarrow{o} a$ for each $o \in O$, $a \in add(o)$.

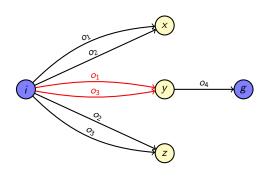


M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Definition (Cut)

A cut in a justification graph is a subset C of its edges such that all paths from i to g contain an edge from C.



M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 22, 2017

November 22, 2017

13 / 32

E4. Landmarks: Cut Landmarks & LM-cut Heuristic

Cut Landmarks

Cuts are Disjunctive Action Landmarks

Theorem (Cuts are Disjunctive Action Landmarks)

Let P be a pcf for $\langle V, \{i\}, O, \{g\} \rangle$ and C be a cut in the justification graph for P. The set of edge labels from C (formally $\{o \mid \langle v, o, v' \rangle \in C\}$) is a disjunctive action landmark for $I = \{i\}$.

Proof idea:

- ▶ The justification graph corresponds to a simpler problem where some preconditions (those not picked by the pcf) are ignored.
- ▶ Cuts are landmarks for this simplified problem.
- ▶ Hence they are also landmarks for the original problem.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 22, 2017

14 / 22

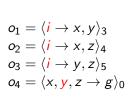
E4. Landmarks: Cut Landmarks & LM-cut Heuristic

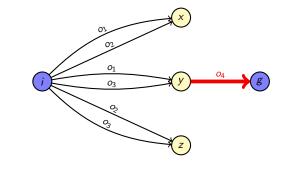
Cut Landmarks

Example: Cuts in Justification Graphs

Example

landmark $A = \{o_4\}$ (cost = 0)





E4. Landmarks: Cut Landmarks & LM-cut Heuristic

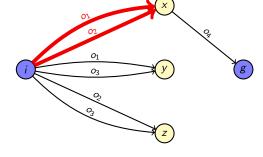
Cut Landmarks

Example: Cuts in Justification Graphs

Example

landmark $B = \{o_1, o_2\}$ (cost = 3)

 $o_{1} = \langle i \to x, y \rangle_{3}$ $o_{2} = \langle i \to x, z \rangle_{4}$ $o_{3} = \langle i \to y, z \rangle_{5}$ $o_{4} = \langle x, y, z \to g \rangle_{0}$



M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

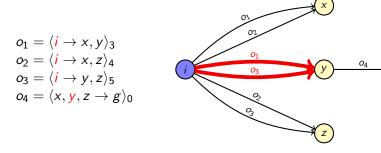
November 22, 2017

16 / 3

Example: Cuts in Justification Graphs

Example

landmark
$$C = \{o_1, o_3\}$$
 (cost = 3)



M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

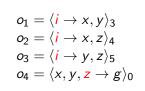
November 22, 2017

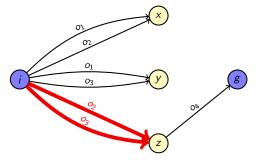
E4. Landmarks: Cut Landmarks & LM-cut Heuristic

Example: Cuts in Justification Graphs

Example

landmark
$$D = \{o_2, o_3\}$$
 (cost = 4)





M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 22, 2017

E4. Landmarks: Cut Landmarks & LM-cut Heuristic

Cut Landmarks

Power of Cuts in Justification Graphs

- ▶ Which landmarks can be computed with the cut method?
- ▶ all interesting ones!

Proposition (perfect hitting set heuristics)

Let \mathcal{L} be the set of all "cut landmarks" of a given planning task with initial state I. Then $h^{MHS}(\mathcal{L}) = h^+(I)$.

 \rightsquigarrow Hitting set heuristic for \mathcal{L} is perfect.

Proof idea:

▶ Show 1:1 correspondence of hitting sets H for \mathcal{L} and plans, i.e., each hitting set for \mathcal{L} corresponds to a plan, and vice versa.

E4. Landmarks: Cut Landmarks & LM-cut Heuristic

The LM-Cut Heuristic

E4.3 The LM-Cut Heuristic

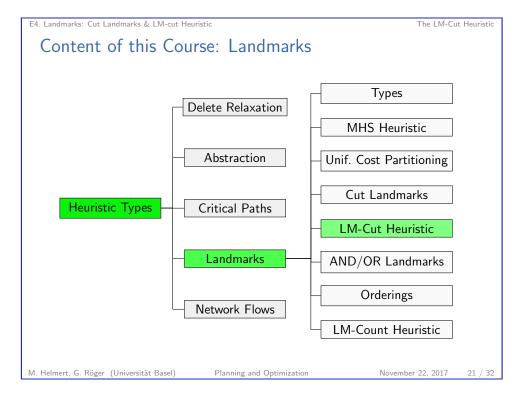
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 22, 2017



E4. Landmarks: Cut Landmarks & LM-cut Heuristic The LM-Cut Heuristic LM-Cut Heuristic: Motivation ▶ In general, there are exponentially many pcfs, hence computing all relevant landmarks is not tractable. ► The LM-cut heuristic is a method that chooses pcfs and computes cuts in a goal-oriented way. ▶ As a side effect, it computes a (non-uniform) cost partitioning.

Planning and Optimization

E4. Landmarks: Cut Landmarks & LM-cut Heuristic The LM-Cut Heuristic LM-Cut Heuristic (1)

h^{LM-cut}: Helmert & Domshlak (2009)

Initialize $h^{LM-cut}(I) := 0$. Then iterate:

- ① Compute h^{max} values of the variables. Stop if $h^{\max}(g) = 0$.
- 2 Let P be a pcf that chooses preconditions with maximal h^{max} value.
- 3 Compute the justification graph for *P*.
- Ompute a cut which guarantees cost(L) > 0for the corresponding landmark L (next slide).
- **1** Increase $h^{LM-cut}(I)$ by cost(L).
- **1** Decrease cost(o) by cost(L) for all $o \in L$.

E4. Landmarks: Cut Landmarks & LM-cut Heuristic

M. Helmert, G. Röger (Universität Basel)

The LM-Cut Heuristic

November 22, 2017

LM-Cut Heuristic (2)

h^{LM-cut}: Helmert & Domshlak (2009)

- **1** Compute a cut which guarantees cost(L) > 0for the corresponding landmark L as follows:
 - ightharpoonup The goal zone V_g of the justification graph consists of all nodes that have a path to g where all edges are labelled with zero-cost operators.
 - ▶ The cut contains all edges $\langle v, o, v' \rangle$ such that $v \notin V_g$, $v' \in V_g$ and v can be reached from i without traversing a node in V_g .

Planning and Optimization

November 22, 2017

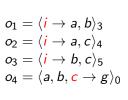
M. Helmert, G. Röger (Universität Basel) Planning and Optimization M. Helmert, G. Röger (Universität Basel)

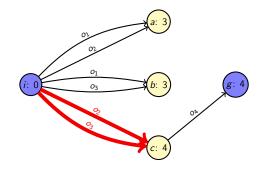
The LM-Cut Heuristic

Example: Computation of LM-Cut

Example

round 1: $P(o_4) = c \rightsquigarrow L = \{o_2, o_3\}$ [4]





M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 22, 2017

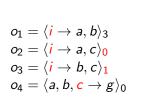
E4. Landmarks: Cut Landmarks & LM-cut Heuristic

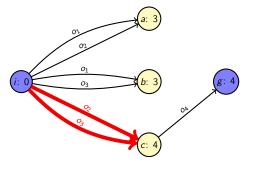
The LM-Cut Heuristic

Example: Computation of LM-Cut

Example

round 1: $P(o_4) = c \rightsquigarrow L = \{o_2, o_3\} [4] \rightsquigarrow h^{LM-cut}(I) := 4$





M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 22, 2017

E4. Landmarks: Cut Landmarks & LM-cut Heuristic

The LM-Cut Heuristic

Example: Computation of LM-Cut

Example

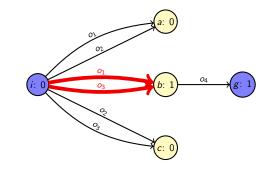
round 2: $P(o_4) = b \rightsquigarrow L = \{o_1, o_3\}$ [1]

$$o_{1} = \langle i \rightarrow a, b \rangle_{3}$$

$$o_{2} = \langle i \rightarrow a, c \rangle_{0}$$

$$o_{3} = \langle i \rightarrow b, c \rangle_{1}$$

$$o_{4} = \langle a, b, c \rightarrow g \rangle_{0}$$



M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 22, 2017

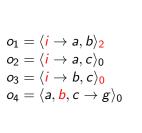
E4. Landmarks: Cut Landmarks & LM-cut Heuristic

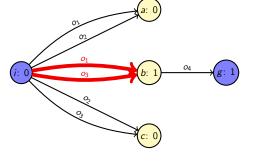
The LM-Cut Heuristic

Example: Computation of LM-Cut

Example

round 2: $P(o_4) = b \rightsquigarrow L = \{o_1, o_3\} [1] \rightsquigarrow h^{LM-cut}(I) := 4 + 1 = 5$





M. Helmert, G. Röger (Universität Basel)

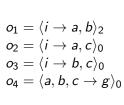
Planning and Optimization

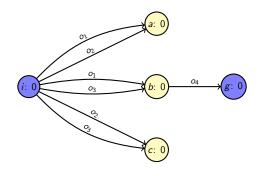
The LM-Cut Heuristic

Example: Computation of LM-Cut

Example

round 3: $h^{\text{max}}(g) = 0 \rightsquigarrow \text{done!} \rightsquigarrow h^{\text{LM-cut}}(I) = 5$





M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 22, 2017

29 / 32

Let $\langle V, I, O, G \rangle$ be a delete-free STRIPS task in normal form. The LM-cut heuristic is admissible: $h^{LM-cut}(I) \leq h^*(I)$.

(Proof omitted.)

Theorem

E4. Landmarks: Cut Landmarks & LM-cut Heuristic

Properties of LM-Cut Heuristic

If Π is not delete-free, we can compute $h^{\text{LM-cut}}$ on Π^+ . Then $h^{\text{LM-cut}}$ is bound by h^+ .

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 22, 2017

.

The LM-Cut Heuristic

E4. Landmarks: Cut Landmarks & LM-cut Heuristic

Summar

E4.4 Summary

E4. Landmarks: Cut Landmarks & LM-cut Heuristic

Summary

Summary

- ► Cuts in justification graphs are a general method to find disjunctive action landmarks.
- ► Hitting sets over all cut landmarks yield a perfect heuristic for delete-free planning tasks.
- ► The LM-cut heuristic is an admissible heuristic based on these ideas.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization