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Landmarks

Basic Idea: Something that must happen in every solution

For example

I some operator must be applied

I some atom must be true

I some formula must be true

→ Derive heuristic estimate from this kind of information.
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Reminder: Terminology

Consider sequence of transitions s0 `1−→ s1, . . . , sn−1 `n−→ sn

such that s0 = s and sn = s ′.

I s0, . . . , sn is called (state) path from s to s ′

I `1, . . . , `n is called (label) path from s to s ′

I s0 `1−→ s1, . . . , sn−1 `n−→ sn is called trace from s to s ′
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Disjunctive Action Landmarks

Definition (Disjunctive Action Landmark)

Let s be a state of planning task Π = 〈V , I ,O, γ〉.
A disjunctive action landmark for s is a set of operators L ⊆ O
such that every label path from s to a goal state contains an
operator from L.

The cost of landmark L is cost(L) = mino∈L cost(o).
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Example Task

I Two trucks, one airplane
I Airplane can fly between locations A3 and B1
I Trucks can drive arbitrarily between locations A1, A2, and A3
I Package to be transported from A1 to B1
I Operators

I Load(v , l) and Unload(v , l) for vehicle v and location l
I Drive(t, l , l ′) for truck t and locations l , l ′

I Fly(l , l ′) for locations l , l ′

A1

A2

A3 B1

Airplane

Truck1

Truck2

Package
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Example: Disjunctive Action Landmarks

L1 = {Load(Truck1,A1), Load(Truck2,A1)} and
L2 = {Fly(B1, A3)} are disjunctive action landmarks.

A1

A2

A3 B1

Airplane

Truck1

Truck2

Package

What other disjunctive action landmarks are there?
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Fact and Formula Landmarks

Definition (Formula and Fact Landmark)

Let s be a state of planning task Π = 〈V , I ,O, γ〉.

A formula landmark for s is a formula λ over V such that
every state path from s to a goal state contains a state s ′

with s ′ |= λ.

If λ ∈ V then λ is a fact landmark.
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Example: Formula Landmarks

at(Package,A3) and in(Package,Airplane) are fact landmarks.

in(Package,Truck1) ∨ in(Package,Truck2) is a formula landmark.

A1

A2

A3 B1

Airplane

Truck1

Truck2

Package

What other formula and fact landmarks are there?
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Remarks

I Not every landmark is informative. Some examples:
I If the initial state is not already a goal state

then the set of all operators is a disjunctive action landmark.
I Every variable that is initially true is a fact landmark.
I The goal formula is a formula landmark.

I Deciding whether a given variable is a fact landmark
is as hard as the plan existence problem.

I The same is true for operator sets and
disjunctive action landmarks.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 22, 2017 13 / 29

E3. Landmarks: Introduction & Minimum Hitting Set Heuristic Landmarks

Relationship

Disjunctive action landmarks and fact/formula landmarks are
related:

I Every fact landmark f that is initially false induces a
disjunctive action landmark consisting of all operators that
possibly make f true.

I A disjunctive action landmark {o1, . . . , on} induces a formula
landmark λ = pre(o1) ∨ · · · ∨ pre(on) and therefore also a fact
landmark v for all v ∈ V with λ |= v .

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 22, 2017 14 / 29

E3. Landmarks: Introduction & Minimum Hitting Set Heuristic Landmarks

Exploiting Disjunctive Action Landmarks

How can we exploit a given set L of disjunctive action landmarks?

I Sum of costs
∑

L∈L cost(L)?
 not admissible!

I Maximize costs maxL∈L cost(L)?
 usually very weak heuristic

I better: hitting sets or cost partitioning
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E3.2 Minimum Hitting Set Heuristic
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Hitting Sets

Definition (Hitting Set)

Let X be a set, F = {F1, . . . ,Fn} ⊆ 2X be a family of subsets of
X and c : X → R+

0 be a cost function for X .

A hitting set is a subset H ⊆ X that “hits” all subsets in F , i.e.,
H ∩ F 6= ∅ for all F ∈ F . The cost of H is

∑
x∈H c(x).

A minimum hitting set (MHS) is a hitting set with minimal cost.

MHS is a “classical” NP-complete problem (Karp, 1972)
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Example: Hitting Sets

Example

X = {o1, o2, o3, o4}

F = {{o4}, {o1, o2}, {o1, o3}, {o2, o3}}

c(o1) = 3, c(o2) = 4, c(o3) = 5, c(o4) = 0

minimum hitting set: {o1, o2, o4} with cost 3 + 4 + 0 = 7
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Hitting Sets for Disjunctive Action Landmarks

Idea: disjunctive action landmarks are interpreted as
Idea: instance of minimum hitting set

Definition (Hitting Set Heuristic)

Let L be a set of disjunctive action landmarks. The hitting set
heuristic hMHS(L) is defined as the cost of a minimum hitting set
for L with c(o) = cost(o).

Proposition (Hitting Set Heuristic is Admissible)

Let L be a set of disjunctive action landmarks for state s.
Then hMHS(L) is an admissible estimate for s.

Why?
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Hitting Set Heuristic: Discussion

I The hitting set heuristic is the best possible heuristic
that only uses the given information. . .

I . . . but is NP-hard to compute.

I  Use approximations that can be efficiently computed.

I Now: uniform cost partitioning

I Later in the course: optimal cost partitioning
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E3.3 Uniform Cost Partitioning
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Uniform Cost Partitioning (1)

Idea: Distribute cost of operators uniformly among the landmarks.

Definition (Uniform Cost Partitioning Heuristic for Landmarks)

Let L be a set of disjunctive action landmarks.

The uniform cost partitioning heuristic hUCP(L) is defined as

hUCP(L) =
∑
L∈L

min
o∈L

c ′(o) with

c ′(o) = cost(o)/|{L ∈ L | o ∈ L}|.
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Uniform Cost Partitioning (2)

Theorem (Uniform Cost Partitioning Heuristic is Admissible)

Let L be a set of disjunctive action landmarks for state s of Π.
Then hUCP(L) is an admissible heuristic estimate for s.

Proof.

Let π = 〈o1, . . . , on〉 be an optimal plan for s. For L ∈ L define a
new cost function costL as costL(o) = c ′(o) if o ∈ L and
costL(o) = 0 otherwise. Let ΠL be a modified version of Π, where
for all operators o the cost is replaced with costL(o). We make
three independent observations:

1 For L ∈ L the value cost′(L) := mino∈L c
′(o)

is an admissible estimate for s in ΠL.

2 π is also a plan for s in ΠL, so h∗ΠL
(s) ≤

∑n
i=1 costL(oi ).

3
∑

L∈L costL(o) = cost(o) for each operator o.

. . .
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Uniform Cost Partitioning (3)

Proof (continued).

Together, this leads to the following inequality (subscripts indicate
for which task the heuristic is computed):

hUCP
Π (L) =

∑
L∈L

cost′(L)
(1)

≤
∑
L∈L

h∗ΠL
(s)

(2)

≤
∑
L∈L

n∑
i=1

costL(oi ) =
n∑

i=1

∑
L∈L

costL(oi )

(3)
=

n∑
i=1

cost(o) = h∗Π(s)
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Relationship

Theorem
Let L be a set of disjunctive action landmarks for state s.

Then hUCP(L) ≤ hMHS(L) ≤ h∗(s).

(Proof omitted.)
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E3.4 Summary
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I Landmarks describe properties that are shared by
all plans of a task.

I Hitting sets yield the most accurate heuristic for a given set of
disjunctive action landmarks, but the computation is NP-hard.

I Uniform cost partitioning is a polynomial approach for the
computation of informative heuristics from
disjunctive action landmarks.
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