

Malte Helmert and Gabriele Röger

Universität Basel

November 22, 2017

Planning and Optimization

E3. Landmarks: Introduction & Minimum Hitting Set Heuristic

M. Helmert, G. Röger (Universität Basel)

November 22, 2017 1 / 29

Landmarks

E3.1 Landmarks

Planning and Optimization November 22, 2017 — E3. Landmarks: Introduction & Minimun	n Hitting Set Heur	istic
E3.1 Landmarks		
E3.2 Minimum Hitting Set Heuristic		
E3.3 Uniform Cost Partitioning		
E3.4 Summary		
M. Helmert, G. Röger (Universität Basel) Planning and Optimization	November 22, 2017	2 / 29

E3. Landmarks: Introduction & Minimum Hitting Set Heuristic

Landmarks

Basic Idea: Something that must happen in every solution

For example

- some operator must be applied
- some atom must be true
- some formula must be true
- \rightarrow Derive heuristic estimate from this kind of information.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

November 22, 2017 5 / 29

Landmarks

Reminder: Terminology Consider sequence of transitions $s^0 \xrightarrow{\ell_1} s^1, \ldots, s^{n-1} \xrightarrow{\ell_n} s^n$ such that $s^0 = s$ and $s^n = s'$. • s^0, \ldots, s^n is called (state) path from s to s' • ℓ_1, \ldots, ℓ_n is called (label) path from s to s' • $s^0 \xrightarrow{\ell_1} s^1, \ldots, s^{n-1} \xrightarrow{\ell_n} s^n$ is called trace from s to s' M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 22, 2017 6 / 29 E3. Landmarks: Introduction & Minimum Hitting Set Heuristic **Disjunctive Action Landmarks**

E3. Landmarks: Introduction & Minimum Hitting Set Heuristic

Definition (Disjunctive Action Landmark) Let s be a state of planning task $\Pi = \langle V, I, O, \gamma \rangle$. A disjunctive action landmark for s is a set of operators $L \subseteq O$ such that every label path from s to a goal state contains an operator from L.

The cost of landmark *L* is $cost(L) = min_{o \in L} cost(o)$.

E3. Landmarks: Introduction & Minimum Hitting Set Heuristic

Example Task

- ► Two trucks, one airplane
- Airplane can fly between locations A3 and B1
- > Trucks can drive arbitrarily between locations A1, A2, and A3

Landmarks

- ▶ Package to be transported from A1 to B1
- Operators
 - ▶ Load(v, l) and Unload(v, l) for vehicle v and location l
 - Drive(t, l, l') for truck t and locations l, l'
 - ► Fly(*I*, *I'*) for locations *I*, *I'*

Planning and Optimization

Example: Formula Landmarks at(Package, A3) and in(Package, Airplane) are fact landmarks. in(Package, Truck1) \lor in(Package, Truck2) is a formula landmark. Truck1 A3 A3

Planning and Optimization

11 / 29

Planning and Optimization

Planning and Optimization

19 / 29

E3. Landmarks: Introduction & Minimum Hitting Set Heuristic

Uniform Cost Partitioning

Uniform Cost Partitioning (2)

Theorem (Uniform Cost Partitioning Heuristic is Admissible) Let \mathcal{L} be a set of disjunctive action landmarks for state s of Π . Then $h^{UCP}(\mathcal{L})$ is an admissible heuristic estimate for s.

Proof.

Let $\pi = \langle o_1, \ldots, o_n \rangle$ be an optimal plan for *s*. For $L \in \mathcal{L}$ define a new cost function $cost_L$ as $cost_L(o) = c'(o)$ if $o \in L$ and $cost_L(o) = 0$ otherwise. Let Π_L be a modified version of Π , where for all operators *o* the cost is replaced with $cost_L(o)$. We make three independent observations:

- For L ∈ L the value cost'(L) := min_{o∈L} c'(o) is an admissible estimate for s in Π_L.
- 2 π is also a plan for s in Π_L , so $h_{\Pi_L}^*(s) \leq \sum_{i=1}^n cost_L(o_i)$.

Planning and Optimization

• $\sum_{L \in \mathcal{L}} cost_L(o) = cost(o)$ for each operator o.

M. Helmert, G. Röger (Universität Basel)

E3. Landmarks: Introduction & Minimum Hitting Set Heuristic

Uniform Cost Partitioning

November 22, 2017

. . .

25 / 29

Relationship

Theorem Let \mathcal{L} be a set of disjunctive action landmarks for state s. Then $h^{UCP}(\mathcal{L}) \leq h^{MHS}(\mathcal{L}) \leq h^*(s)$.

(Proof omitted.)

Uniform Cost Partitioning (3)

Proof (continued).

Together, this leads to the following inequality (subscripts indicate for which task the heuristic is computed):

Summary

- Landmarks describe properties that are shared by all plans of a task.
- Hitting sets yield the most accurate heuristic for a given set of disjunctive action landmarks, but the computation is NP-hard.
- Uniform cost partitioning is a polynomial approach for the computation of informative heuristics from disjunctive action landmarks.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization No

November 22, 2017 29 / 29