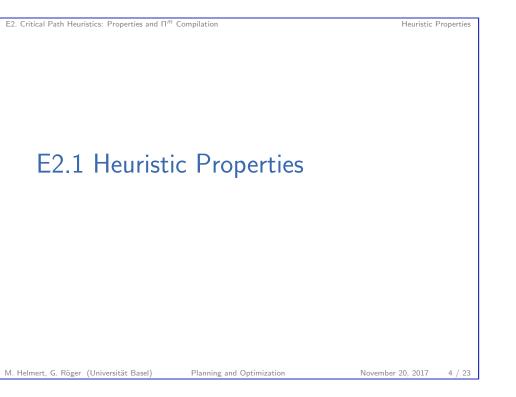


Planning and Optimization November 20, 2017 — E2. Critical Path Heuristics: Properties and Π^m Compilation	
E2.1 Heuristic Properties	
E2.2 Π^m Compilation	
E2.3 Summary	
E2.4 Literature	
Л. Helmert, G. Röger (Universität Basel) Planning and Optimization November 20, 2017 2 / 23	



Heuristic for Forward or Backward Search? (1)

Any heuristic can be used for both, forward and backward search:

- Let h_f be a forward search heuristic (as in earlier chapters). We can use it to get estimate for state S in backward search on task (V, I, O, G), computing h_f(I) on task (V, I, O, S).
- ▶ We also can use a backward search heuristic h_b in forward search on task (V, I, O, G), determining estimate for state s as h_b(G) on task (V, s, O, G).

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

November 20, 2017

5 / 23

Heuristic Properties

Heuristic Propertie

E2. Critical Path Heuristics: Properties and Π^m Compilation

Heuristic Properties (1)

Theorem

Let $\Pi = \langle V, I, O, G \rangle$ be a conflict-free STRIPS planning tasks and $S \subseteq V$ be a backward search state. Then $h_b^m(S) := h^m(I, S)$ is a safe, goal-aware, consistent, and admissible heuristic for Π .

Proof.

We prove goal-awareness and consistency, the other properties follow from these two.

Goal-awareness: S is a goal state iff $S \subseteq I$. Then $h_b^m(S) = h^m(I, S) = 0$.

Heuristic for Forward or Backward Search? (2)

We defined h^m so that it can directly be used for both directions on task (V, I, O, G) as

- $h_f^m(s) := h^m(s, G)$ for forward search, or
- $h_b^m(S) := h^m(I, S)$ for backward search.

Precomputation determines $h^m(s, B)$ for all $B \subseteq V$ with $|B| \leq m$.

- ▶ For h^m_f, we can only use these values for a single heuristic evaluation, because the state s changes.
- For h^m_b, we can re-use these values and all subsequent heuristic evaluations are quite cheap.

$\rightarrow h^m$ better suited for backward search

 \rightarrow We examine it in the following in this context.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 20, 2017 6 / 23

Heuristic Properties

E2. Critical Path Heuristics: Properties and Π^m Compilation

Heuristic Properties (2)

Proof (continued).

Consistency: Assume h_b^m is not consistent, i.e., there is a state S and an operator o, where $R := sregr(S, o) \neq \bot$ such that $h_b^m(S) > cost(o) + h_b^m(R)$.

Then $h_b^m(S) = h^m(I, S)$ and there is $S' \subseteq S$ with $|S'| \leq m$ and $h^m(I, S') = h^m(I, S)$: if $|S| \leq m$, choose S' = S, otherwise choose any maximizing subset from the last h^m equation.

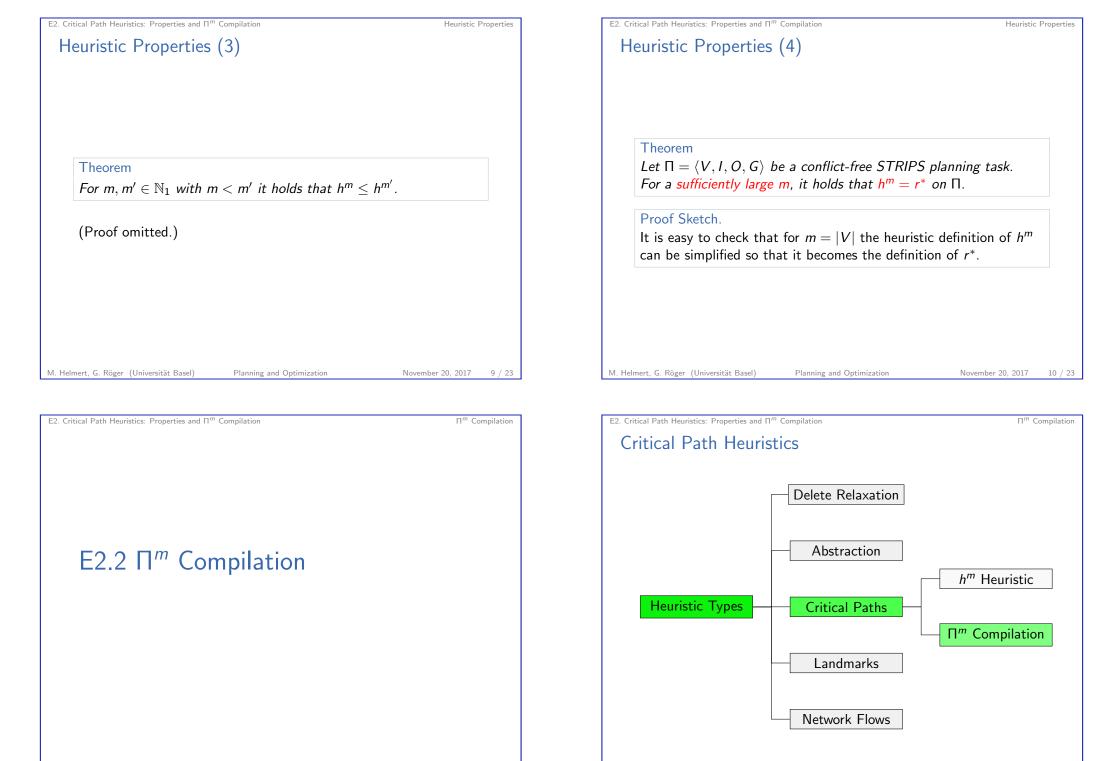
As $S' \subseteq S$ and $sregr(S, o) \neq \bot$, also $R' := sregr(S', o) \neq \bot$ and $(R', o) \in R(S', O)$. This gives $h^m(I, S') \leq cost(o) + h^m(I, R')$.

As $S' \subseteq S$, it holds that $R' \subseteq R$ and $h^m(I, R') \leq h^m(I, R)$.

Overall, we get $h_b^m(S) = h^m(I, S) = h^m(I, S') \le cost(o) + h^m(I, R') \le cost(o) + h^m(I, R) = cost(o) + h_b^m(R)$. $\checkmark \square$

Planning and Optimization

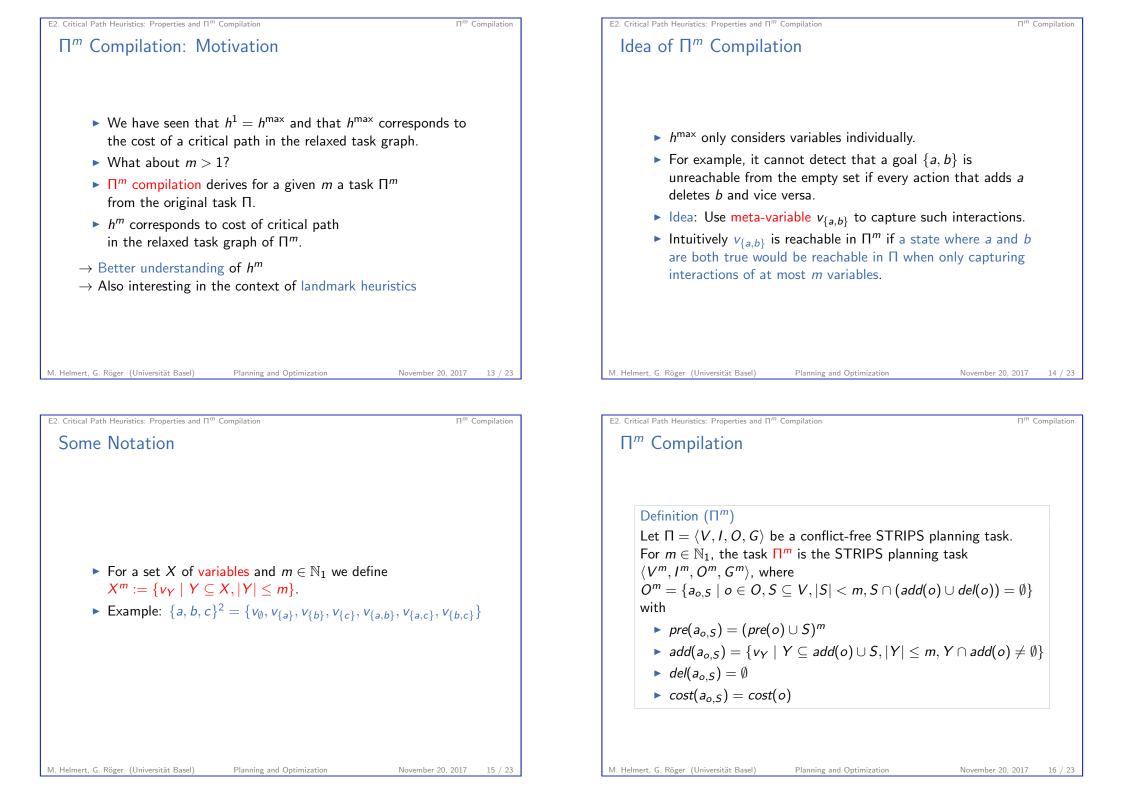
. . .



M. Helmert, G. Röger (Universität Basel)

12 / 23

Planning and Optimization



Π^m for Running Example with m = 2

For running example Π we get $\Pi^2 = \langle V', I', O', G' \rangle$, where

$$V' = \{v_{\emptyset}, v_{\{a\}}, v_{\{b\}}, v_{\{c\}}, v_{\{a,b\}}, v_{\{a,c\}}, v_{\{b,c\}}\}$$
$$I' = \{v_{\emptyset}, v_{\{a\}}\}$$
$$G' = \{v_{\emptyset}, v_{\{a\}}, v_{\{b\}}, v_{\{c\}}, v_{\{a,b\}}, v_{\{a,c\}}, v_{\{b,c\}}\}$$
$$O' = \{a_{o_1,\emptyset}, a_{o_1,\{a\}}, a_{o_2,\emptyset}, a_{o_2,\{c\}}, a_{o_3,\emptyset}, a_{o_3,\{b\}}, a_{o_3,\{c\}}\}$$

with (for example)

$$a_{o_3, \{c\}} = \langle \{v_{\emptyset}, v_{\{b\}}, v_{\{c\}}, v_{\{b,c\}}\}, \{v_{\{a\}}, v_{\{a,c\}}\}, \emptyset, 2 \rangle$$

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

E2. Critical Path Heuristics: Properties and Π^m Compilation

П^{*m*} Compila

17 / 23

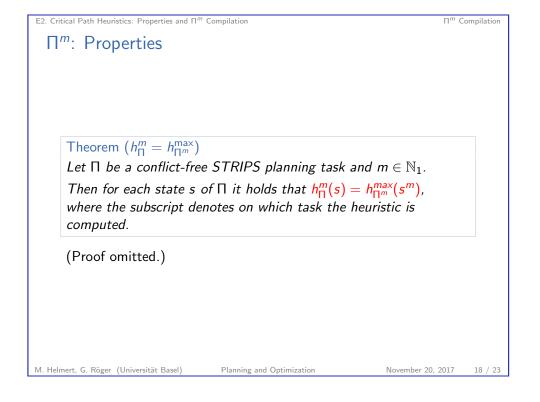
November 20, 2017

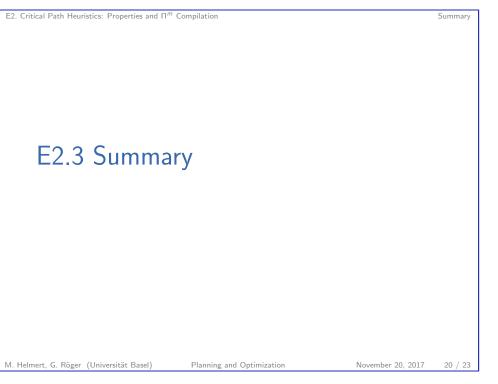
Can we in general compute an admissible heuristic on Π^m and get admissible estimates for Π ? \sim No!

Theorem

There are conflict-free STRIPS planning tasks Π , $m \in \mathbb{N}_1$ and admissible heuristics h such that $h^*_{\Pi}(s) < h_{\Pi^m}(s^m)$ for some state s of Π .

(Proof omitted.)





E2. Critical Path Heuristics: Properties and Π^m Compilation	tion
--	------

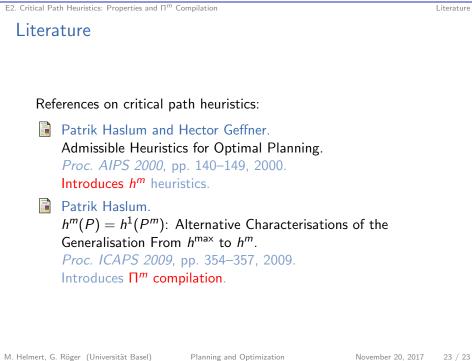
Summary

November 20, 2017 21 / 23

Summary

- \blacktriangleright h^m heuristics are best suited for backward search.
- \blacktriangleright h^m heuristics are safe, goal aware, consistent and admissible.
- The Π^m compilation explicitly represents sets (= conjunctions) of variables as meta-variables.
- $h_{\Pi}^{m}(s) = h_{\Pi^{m}}^{\max}(s^{m})$

M. Helmert, G. Röger (Universität Basel) Planning and Optimization



E2.4	Literatur	re		
M. Helmert, G. Röger	(Universität Basel)	Planning and Optimization	November 20, 2017	22 / 23

E2. Critical Path Heuristics: Properties and Π^m Compilation