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Generic Algorithm Template

Generic M&S computation algorithm

abs := {T π{v} | v ∈ V }
while abs contains more than one abstract transition system:

select A1, A2 from abs
shrink A1 and/or A2 until size(A1) · size(A2) ≤ N
abs := abs \ {A1,A2} ∪ {A1 ⊗A2}

return the remaining abstract transition system in abs

Remaining question:

I Which abstractions to select?  merging strategy
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Linear Merging Strategies

Linear Merging Strategy

In each iteration after the first, choose the abstraction computed
in the previous iteration as A1.

Rationale: only maintains one “complex” abstraction at a time

 Fully defined by an ordering of atomic projections.
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Linear Merging Strategies: Choosing the Ordering

Use similar causal graph criteria as for growing patterns.

Example: Strategy of hHHH

hHHH: Ordering of atomic projections
I Start with a goal variable.

I Add variables that appear in preconditions of operators
affecting previous variables.

I If that is not possible, add a goal variable.

Rationale: increases h quickly
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Non-linear Merging Strategies

I Non-linear merging strategies only recently gained more
interest in the planning community.

I One reason: Better label reduction techniques (later in this
chapter) enabled a more efficient computation.

I Examples:
I DFP: preferrably merge transition systems that must

synchronize on labels that occur close to a goal state.
I UMC and MIASM: Build clusters of variables with strong

interactions and first merge variables within each cluster.

I Each merge-and-shrink heuristic computed with a non-linear
merging strategy can also be computed with a linear merging
strategy.

I However, linear merging can require a super-polynomial
blow-up of the final representation size.
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Label Reduction: Motivation (1)
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Whenever there is a transition with label o ′ there is also a
transition with label o. If o ′ is not cheaper than o, we can always
use the transition with o.

Idea: Replace o and o ′ with label o ′′ with cost of o
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Label Reduction: Motivation (2)
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States s and t are not bisimilar due to labels p and p′. In T ′ they
label the same (parallel) transitions. If p and p′ have the same
cost, in such a situation there is no need for distinguishing them.

Idea: Replace p and p′ with label p′′ with same cost.
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Label Reduction: Motivation (3)
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Label reductions reduce the time and memory requirement for
merge and shrink steps and enable coarser bisimulation
abstractions.

When is label reduction a safe transformation?
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Label Reduction: Definition

Definition (Label Reduction)

Let X be a collection of transition systems with label set L and
label cost function c . A label reduction 〈λ, c ′〉 for X is given by a
function λ : L→ L′, where L′ is an arbitrary set of labels, and a
label cost function c ′ on L′ such that for all ` ∈ L, c ′(λ(`)) ≤ c(`).

For T = 〈S , L, c,T , s0,S?〉 ∈ X the label-reduced transition system
is T 〈λ,c ′〉 = 〈S , L′, c ′, {〈s, λ(`), t〉 | 〈s, `, t〉 ∈ T}, s0,S?〉.

The label-reduced collection is X 〈λ,c
′〉 = {T 〈λ,c ′〉 | T ∈ X}.

L′ ∩ L 6= ∅ and L′ = L are allowed.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 14 / 29

D10. M&S: Merging Strategies and Label Reduction Label Reduction

Label Reduction is Safe (1)

Theorem (Label Reduction is Safe)

Let X be a collection of transition systems and 〈λ, c ′〉 be a
label-reduction for X . The transformation from X to X 〈λ,c

′〉 is safe.

Proof.
We show that the transformation is safe, using σ = id for the
mapping of states and λ for the mapping of labels.

The label cost function of TX 〈λ,c′〉 is c ′ and has the required
property by the definition of label reduction. . . .
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Label Reduction is Safe (2)

Theorem (Label Reduction is Safe)

Let X be a collection of transition systems and 〈λ, c ′〉 be a
label-reduction for X . The transformation from X to X 〈λ,c

′〉 is safe.

Proof (continued).

By the definition of synchronized products, TX has a transition
〈〈s1, . . . , s|X |〉, `, 〈t1, . . . , t|X |〉〉 if for all i , Ti ∈ X has a transition
〈si , `, ti 〉. By the definition of label-reduced transition systems, this
implies that T 〈λ,c ′〉 has a corresponding transition 〈si , λ(`), ti 〉, so
TX 〈λ,c′〉 has a transition 〈s, λ(`), t〉 = 〈σ(s), λ(`), σ(t)〉 (definition
of synchronized products).

For each goal state s? of TX , state σ(s?) = s? is a goal state of
TX 〈λ,c′〉 because the transformation replaces each transition system
with a system that has the same goal states.
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More Terminology

Let X be a collection of transition systems with labels L. Let
`, `′ ∈ L be labels and let T ∈ X .

I Label ` is alive in X if all T ′ ∈ X have some transition
labelled with `. Otherwise, ` is dead.

I Label ` locally subsumes label `′ in T if for all transitions
〈s, `′, t〉 of T there is also a transition 〈s, `, t〉 in T .

I ` globally subsumes `′ if it locally subsumes `′ in all T ′ ∈ X .

I ` and `′ are locally equivalent in T if they label the same
transitions in T , i.e. ` locally subsumes `′ in T and vice versa.

I ` and `′ are T -combinable if they are locally equivalent in all
transition systems T ′ ∈ X \ {T }.
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Exact Label Reduction

Theorem (Criteria for Exact Label Reduction)

Let X be a collection of transition systems with cost function c
and label set L that contains no dead labels.

Let 〈λ, c ′〉 be a label-reduction for X such that λ combines labels
`1 and `2 and leaves other labels unchanged. The transformation
from X to X 〈λ,c

′〉 is exact iff c(`1) = c(`2), c ′(λ(`)) = c(`) for all
` ∈ L, and

I `1 globally subsumes `2, or

I `2 globally subsumes `1, or

I `1 and `2 are T -combinable for some T ∈ X.

(Proof omitted.)
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Back to Example (1)
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Label o ′ globally subsumes label o.
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Back to Example (2)
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Labels p and p′ are T -combinable.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 20 / 29



D10. M&S: Merging Strategies and Label Reduction Label Reduction

Computation of Exact Label Reduction (1)

I For given labels `1, `2, the criteria can be tested in low-order
polynomial time.

I Finding globally subsumed labels involves finding subset
relationsships in a set family.
 no linear-time algorithms known

I The following algorithm exploits only T -combinability.
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Computation of Exact Label Reduction (2)

eqi := set of label equivalence classes of Ti ∈ X

Label-reduction based on Ti -combinability

eq := {L}
for j ∈ {1, . . . , |X |} \ {i}

Refine eq with eqj

// two labels are in the same set of eq
// iff they are locally equivalent in all Tj 6= Ti .
λ = id
for B ∈ eq

samecost := {[`]∼c | ` ∈ B, `′ ∼c `
′′ iff c(`′) = c(`′′)}

for L′ ∈ samecost
`new := new label
c ′(`new) := cost of labels in L′

for ` ∈ L′

λ(`) = `new
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Application in Merge-and-Shrink Algorithm

Generic M&S Computation Algorithm with Label Reduction

abs := {T π{v} | v ∈ V }
while abs contains more than one abstract transition system:

select T1, T2 from abs
possibly label-reduce all T ∈ abs

(e.g. based on T1- and/or T2-combinability).
shrink T1 and/or T2 until size(T1) · size(T2) ≤ N
possibly label-reduce all T ∈ abs
abs := abs \ {T1, T2} ∪ {T1 ⊗ T2}

return the remaining abstract transition system in abs
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D10.3 Summary
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Summary

I There is a wide range of merging strategies. We only covered
some important ones.

I Label reduction is crucial for the performance of the
merge-and-shrink algorithm, especially when using bisimilarity
for shrinking.
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D10.4 Literature
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Literature (1)

References on merge-and-shrink abstractions:

Klaus Dräger, Bernd Finkbeiner and Andreas Podelski.
Directed Model Checking with Distance-Preserving
Abstractions.
Proc. SPIN 2006, pp. 19–34, 2006.
Introduces merge-and-shrink abstractions (for model-checking)
and DFP merging strategy.

Malte Helmert, Patrik Haslum and Jörg Hoffmann.
Flexible Abstraction Heuristics for Optimal Sequential
Planning.
Proc. ICAPS 2007, pp. 176–183, 2007.
Introduces merge-and-shrink abstractions for planning.
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Literature (2)

Raz Nissim, Jörg Hoffmann and Malte Helmert.
Computing Perfect Heuristics in Polynomial Time: On
Bisimulation and Merge-and-Shrink Abstractions in Optimal
Planning.
Proc. IJCAI 2011, pp. 1983–1990, 2011.
Introduces bisimulation-based shrinking.

Malte Helmert, Patrik Haslum, Jörg Hoffmann and Raz
Nissim.
Merge-and-Shrink Abstraction: A Method for Generating
Lower Bounds in Factored State Spaces.
Journal of the ACM 61 (3), pp. 16:1–63, 2014.
Detailed journal version of the previous two publications.
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Literature (3)

Silvan Sievers, Martin Wehrle and Malte Helmert.
Generalized Label Reduction for Merge-and-Shrink Heuristics.
Proc. AAAI 2014, pp. 2358–2366, 2014.
Introduces label reduction as covered in these slides
(there has been a more complicated version before).

Gaojian Fan, Martin Müller and Robert Holte.
Non-linear merging strategies for merge-and-shrink based on
variable interactions.
Proc. AAAI 2014, pp. 2358–2366, 2014.
Introduces UMC and MIASM merging strategies
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