

Malte Helmert and Gabriele Röger

Universität Basel

November 15, 2017

Planning and Optimization

D9. M&S: Maintaining the Abstraction and Shrinking Strategies

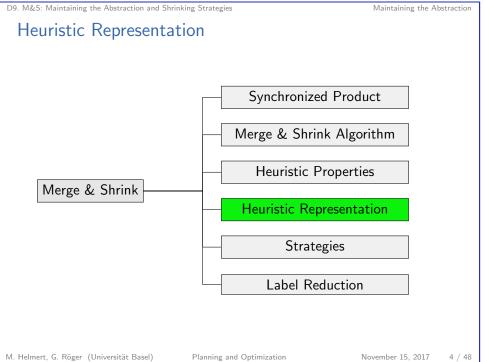
M. Helmert, G. Röger (Universität Basel)

Maintaining the Abstraction

November 15, 2017 1 / 48

D9.1 Maintaining the Abstraction

Planning and Optimization November 15, 2017 — D9. M&S: Maintaining the Abstraction and Shrinking Strategies	
D9.1 Maintaining the Abstraction	
D9.2 Shrinking Strategies	
D9.3 Summary	
M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 15, 2017 2 / 4	8



Maintaining the Abstraction

Generic Algorithm Template

Generic Merge & Shrink Algorithm $abs := \{\mathcal{T}^{\pi_{\{v\}}} \mid v \in V\}$ while abs contains more than one abstract transition system: $select \ \mathcal{A}_1, \ \mathcal{A}_2 \text{ from } abs$ $shrink \ \mathcal{A}_1 \text{ and/or } \mathcal{A}_2 \text{ until } size(\mathcal{A}_1) \cdot size(\mathcal{A}_2) \leq N$ $abs := abs \setminus \{\mathcal{A}_1, \mathcal{A}_2\} \cup \{\mathcal{A}_1 \otimes \mathcal{A}_2\}$ return the remaining abstract transition system in abs

- *N*: parameter bounding number of abstract states
 - The algorithm computes an abstract transition system.
 - ▶ For the heuristic evaluation, we need an abstraction.
 - How to maintain and represent the corresponding abstraction?

Planning and Optimization

```
M. Helmert, G. Röger (Universität Basel)
```

November 15, 2017

5 / 48

Maintaining the Abstraction

D9. M&S: Maintaining the Abstraction and Shrinking Strategies

How to Represent the Abstraction? (1)

Idea: the computation of the abstraction follows the sequence of product computations

- For the atomic abstractions π_{{ν}}, we generate a one-dimensional table that denotes which value in dom(ν) corresponds to which abstract state in T^{π_{{ν}}}.
- During the merge (product) step A := A₁ ⊗ A₂, we generate a two-dimensional table that denotes which pair of states of A₁ and A₂ corresponds to which state of A.
- During the shrink (abstraction) steps, we make sure to keep the table in sync with the abstraction choices.

- One major difficulty for non-PDB abstraction heuristics is to succinctly represent the abstraction.
- For pattern databases, this is easy because the abstractions projections – are very structured.
- ▶ For less rigidly structured abstractions, we need another idea.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

November 15, 2017 6 / 48

D9. M&S: Maintaining the Abstraction and Shrinking Strategies

Maintaining the Abstraction

How to Represent the Abstraction? (2)

Idea: the computation of the abstraction mapping follows the sequence of product computations

- Once we have computed the final abstract transition system, we compute all abstract goal distances and store them in a one-dimensional table.
- At this point, we can throw away all the abstract transition systems – we just need to keep the tables.
- During search, we do a sequence of table lookups to navigate from the atomic abstraction states to the final abstract state and heuristic value

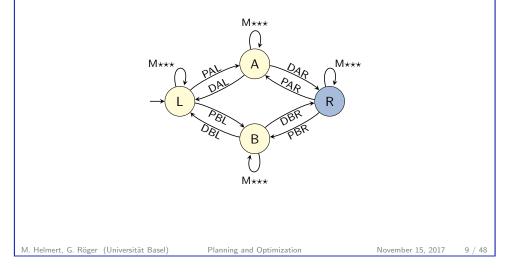
Planning and Optimization

 $\rightsquigarrow 2|V|$ lookups, O(|V|) time

Again, we illustrate the process with our running example.

Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic abstractions is simple. Just number the states (domain values) consecutively and generate a table of references to the states:



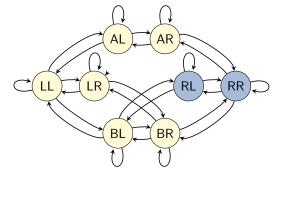
D9. M&S: Maintaining the Abstraction and Shrinking Strategies

Maintaining the Abstraction

11 / 48

Abstraction Example: Merge Step

For product transition systems $\mathcal{A}_1 \otimes \mathcal{A}_2$, we again number the product states consecutively and generate a table that links state pairs of A_1 and A_2 to states of A:

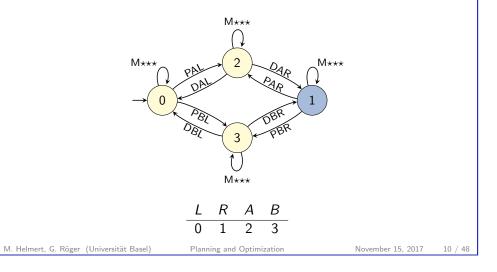


Maintaining the Abstraction

Abstraction Example: Atomic Abstractions

D9. M&S: Maintaining the Abstraction and Shrinking Strategies

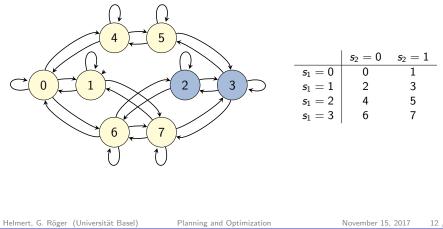
Computing abstractions for the transition systems of atomic abstractions is simple. Just number the states (domain values) consecutively and generate a table of references to the states:



Abstraction Example: Merge Step

D9. M&S: Maintaining the Abstraction and Shrinking Strategies

For product transition systems $\mathcal{A}_1 \otimes \mathcal{A}_2$, we again number the product states consecutively and generate a table that links state pairs of A_1 and A_2 to states of A:



D9. M&S: Maintaining the Abstraction and Shrinking Strategies

Maintaining the Abstraction when Shrinking

- The hard part in representing the abstraction is to keep it consistent when shrinking.
- In theory, this is easy to do:
 - When combining states i and j, arbitrarily use one of them (say i) as the number of the new state.
 - Find all table entries in the table for this abstraction which map to the other state *j* and change them to *i*.
- However, doing a table scan each time two states are combined is very inefficient.
- Fortunately, there also is an efficient implementation which takes constant time per combination.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization

November 15, 2017

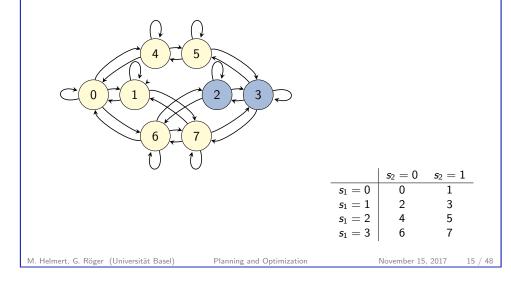
13 / 48

Maintaining the Abstraction

Maintaining the Abstraction

D9. M&S: Maintaining the Abstraction and Shrinking Strategies Abstraction Example: Shrink Step

Representation before shrinking:



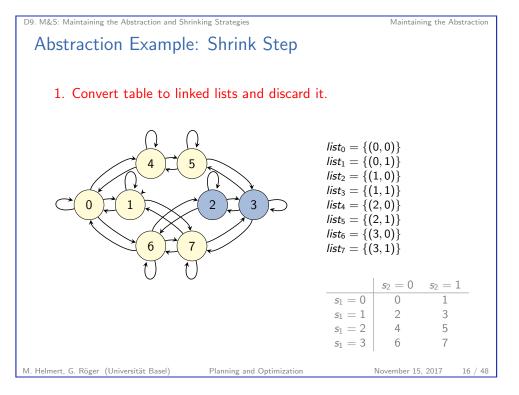
Maintaining the Abstraction Efficiently

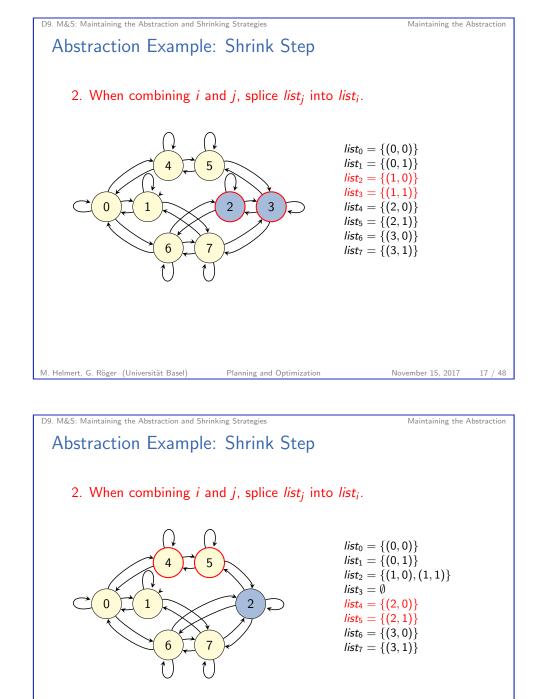
- Associate each abstract state with a linked list, representing all table entries that map to this state.
- Before starting the shrink operation, initialize the lists by scanning through the table, then discard the table.
- While shrinking, when combining i and j, splice the list elements of j into the list elements of i.
 - ► For linked lists, this is a constant-time operation.
- Once shrinking is completed, renumber all abstract states so that there are no gaps in the numbering.
- Finally, regenerate the mapping table from the linked list information.

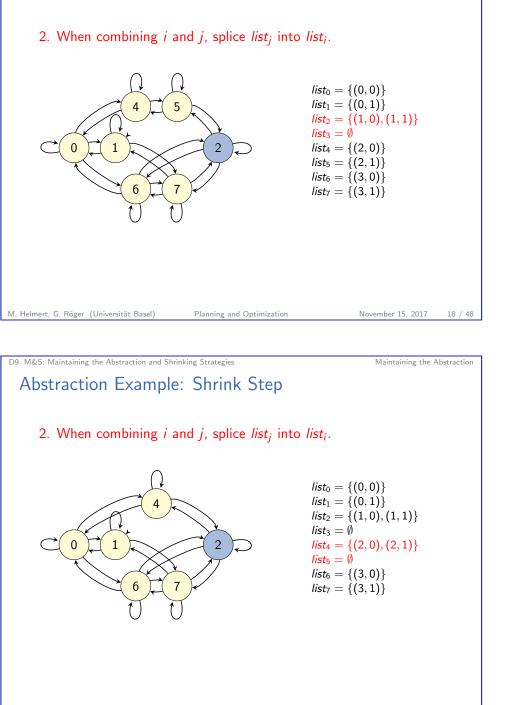
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 15, 2017 14 / 48







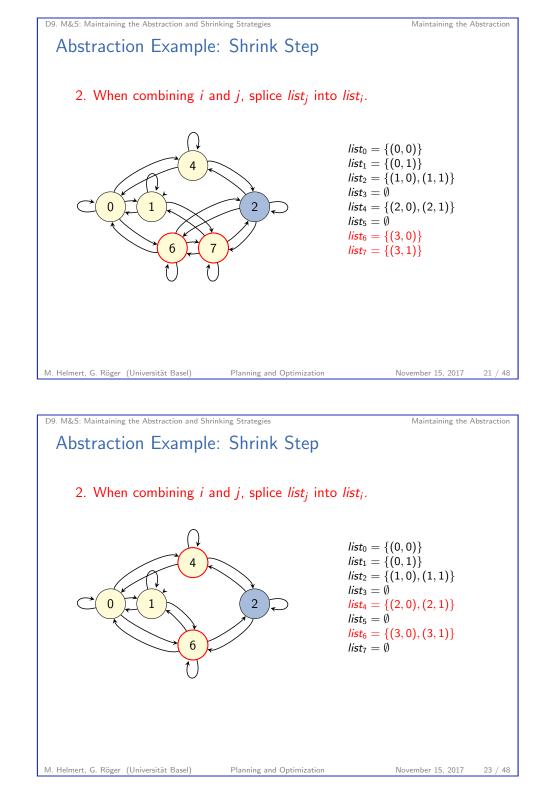
Planning and Optimization

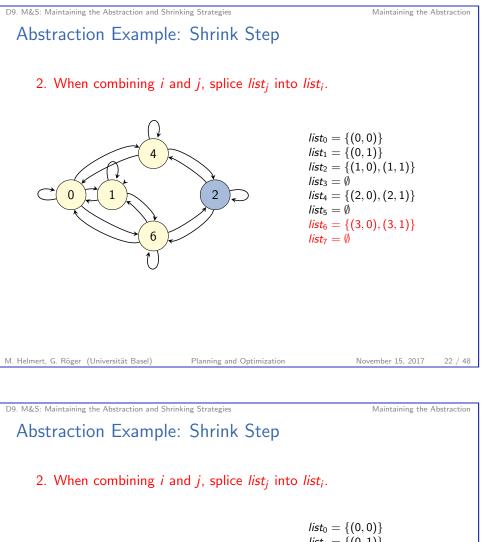
D9. M&S: Maintaining the Abstraction and Shrinking Strategies

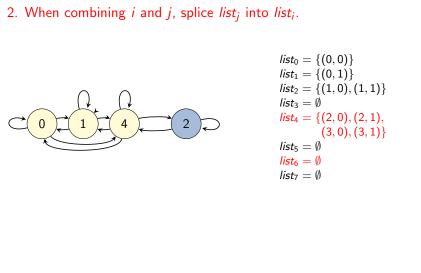
M. Helmert, G. Röger (Universität Basel)

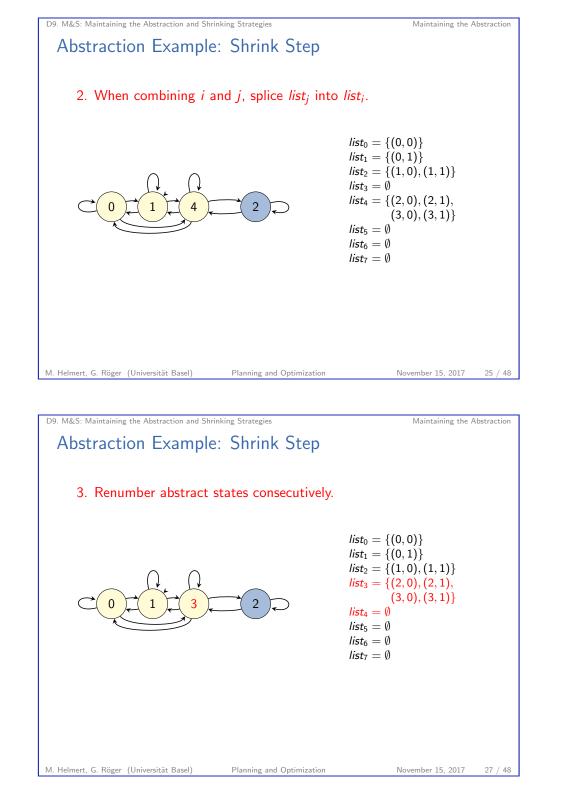
Abstraction Example: Shrink Step

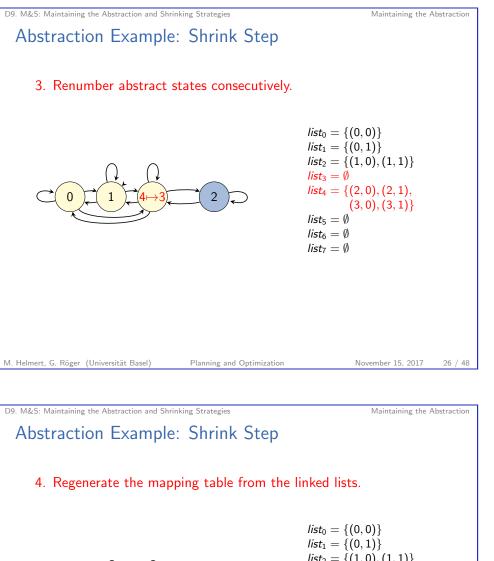
Maintaining the Abstraction

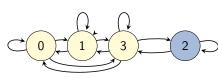




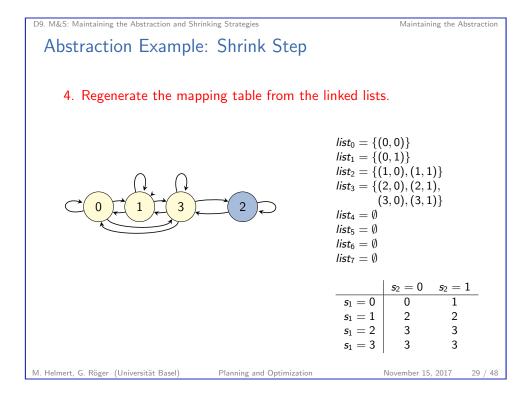








 $\begin{array}{l} \textit{list}_0 = \{(0,0)\}\\ \textit{list}_1 = \{(0,1)\}\\ \textit{list}_2 = \{(1,0),(1,1)\}\\ \textit{list}_3 = \{(2,0),(2,1),\\ (3,0),(3,1)\}\\ \textit{list}_4 = \emptyset\\ \textit{list}_5 = \emptyset\\ \textit{list}_6 = \emptyset\\ \textit{list}_7 = \emptyset\end{array}$



D9. M&S: Maintaining the Abstraction and Shrinking Strategies Shrinking Strategies D9.2 Shrinking Strategies D9.2 Shrinking Strategies

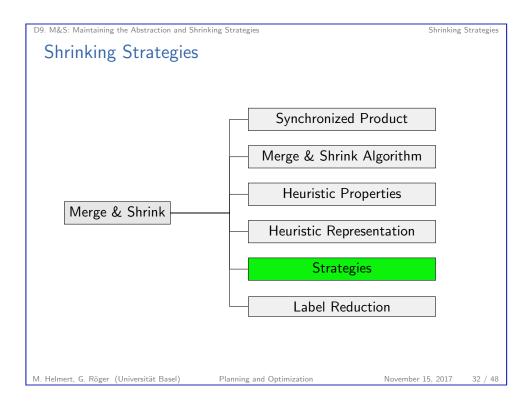
D9. M&S: Maintaining the Abstraction and Shrinking Strategies

The Final Heuristic Representation

At the end, our heuristic is represented by six tables:

three one-dimensional tables for the atomic abstractions:

	ne-unnens		5 101 1110	atomic a	ibstractio	113.
$\mathcal{T}_{package}$		$\frac{A B}{2 3} \frac{7}{2}$	truck A L	R 7	T _{truck B} L	R
	0 1 2	2 3	0	1	0	1
		e two merg		-		eps:
$T_{m\&s}^1$	$s_2 = 0$ s	$\begin{array}{c} 2 = 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 3 \end{array} \begin{array}{c} 5_1 \\ 5_1 \\ 5_1 \\ 5_1 \end{array}$	$T_{\rm m\&s}^2 \mid s_2$	$= 0 s_2 =$	1	
$s_1 = 0$	0	$1 s_1$	= 0	1 1		
$s_1 = 1$	2	2 <i>s</i> ₁	= 1	1 0		
$s_1 = 2$	3	3 s ₁	= 2	2 2		
$s_1 = 3$	3	3 s ₁	= 3	3 3		
		oal distance				rstem:
T _h	<i>s</i> = 0 <i>s</i> =	$\begin{array}{cc} 1 & s = 2 \\ 0 \end{array}$	<i>s</i> = 3			
h(s)	3 2	0	1			
Given a stat	te $s = \{pa$	$ckage\mapsto L$, truck A	$\mapsto L, tru$	$ick \ B \mapsto I$	R},
its heuristic	value is the	nen looked	up as:			
► h(s) =	$T_h[T_{m\&s}^2[$	$T_{m\&s}^1[T_{pac}]$	$_{\text{kage}}[L], T$	truck A[L]], T _{truck B}	[<i>R</i>]]]
M. Helmert, G. Röger (Univ	ersität Basel)	Planning ar	nd Optimizatio	n	November	15, 2017 30 / 48



Generic Algorithm Template

Generic M&S computation algorithm $abs := \{\mathcal{T}^{\pi_{\{v\}}} \mid v \in V\}$ while abs contains more than one abstraction: $select \ \mathcal{A}_1, \ \mathcal{A}_2 \text{ from } abs$ $shrink \ \mathcal{A}_1 \text{ and/or } \mathcal{A}_2 \text{ until } size(\mathcal{A}_1) \cdot size(\mathcal{A}_2) \leq N$ $abs := abs \setminus \{\mathcal{A}_1, \mathcal{A}_2\} \cup \{\mathcal{A}_1 \otimes \mathcal{A}_2\}$ return the remaining abstraction in abs

N: parameter bounding number of abstract states

Remaining Questions:

- ▶ Which abstractions to select? → merging strategy
- ▶ How to shrink an abstraction? ~→ shrinking strategy

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

November 15, 2017

33 / 48

35 / 48

Shrinking Strategies

Shrinking Strategies

D9. M&S: Maintaining the Abstraction and Shrinking Strategies

f-preserving Shrinking Strategy

f-preserving Shrinking Strategy Repeatedly combine abstract states with identical abstract goal distances (*h* values) and identical abstract initial state distances (*g* values).

Rationale: preserves heuristic value and overall graph shape

Tie-breaking Criterion

Prefer combining states where g + h is high. In case of ties, combine states where h is high.

Rationale: states with high g + h values are less likely to be explored by A^{*}, so inaccuracies there matter less

Planning and Optimization



D9. M&S: Maintaining the Abstraction and Shrinking Strategies

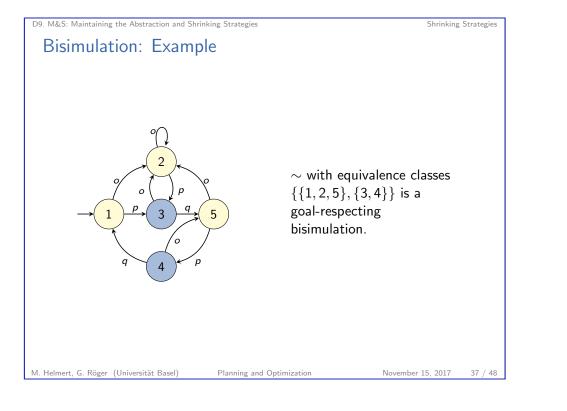
Bisimulation

Definition (Bisimulation)

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$ be a transition system. An equivalence relation \sim on S is a bisimulation for \mathcal{T} if for every $\langle s, \ell, s' \rangle \in T$ and every $t \sim s$ there is a transition $\langle t, \ell, t' \rangle \in T$ with $t' \sim s'$.

A bisimulation \sim is goal-respecting if $s \sim t$ implies that either $s, t \in S_*$ or $s, t \notin S_*$.

Shrinking Strategies



D9. M&S: Maintaining the Abstraction and Shrinking Strategies

Shrinking Strategies

Abstractions as Bisimulations

Definition (Abstraction as Bisimulation)

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$ be a transition system and $\alpha : S \to S'$ be an abstraction of \mathcal{T} . The abstraction induces the equivalence relation \sim_{α} as $s \sim_{\alpha} t$ iff $\alpha(s) = \alpha(t)$. We say that α is a (goal-respecting) bisimulation for \mathcal{T} if \sim_{α} is a (goal-respecting) bisimulation for \mathcal{T} .

D9. M&S: Maintaining the Abstraction and Shrinking Strategies

Bisimulations as Abstractions

Theorem (Bisimulations as Abstractions) Let $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$ be a transition system and \sim be a bisimulation for \mathcal{T} . Then $\alpha_{\sim} : S \to \{[s]_{\sim} \mid s \in S\}$ with $\alpha_{\sim}(s) = [s]_{\sim}$ is an abstraction of \mathcal{T} .

Note: $[s]_{\sim}$ denotes the equivalence class of *s*. Note: Surjectivity follows from the definition of the codomain as the image of α_{\sim} .

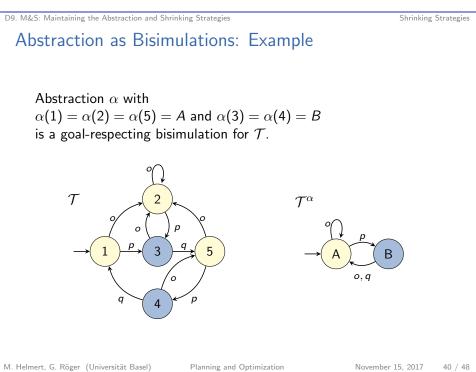
Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

November 15, 2017

Shrinking Strategies

38 / 48



Shrinking Strategies

Goal-respecting Bisimulations are Exact (1)

Theorem

Let X be a collection of transition systems. Let α be an abstraction for $\mathcal{T}_i \in X$. If α is a goal-respecting bisimulation then the transformation from X to $X' := (X \setminus {\mathcal{T}_i}) \cup {\mathcal{T}_i^{\alpha}}$ is exact.

Proof.

Let $\mathcal{T}_X = \mathcal{T}_1 \otimes \cdots \otimes \mathcal{T}_n = \langle S, L, c, T, s_0, S_* \rangle$ and w.l.o.g. $\mathcal{T}_{X'} = \mathcal{T}_1 \otimes \cdots \otimes \mathcal{T}_{i-1} \otimes \mathcal{T}_i^{\alpha} \otimes \mathcal{T}_{i+1} \otimes \cdots \otimes \mathcal{T}_n = \langle S', L', c', T', s'_0, S'_* \rangle$. Consider $\sigma(\langle s_1, \ldots, s_n \rangle) = \langle s_1, \ldots, s_{i-1}, \alpha(s_i), s_{i+1}, \ldots, s_n \rangle$ for the mapping of states and $\lambda = \text{id}$ for the mapping of labels.

 Mappings σ and λ satisfy the requirements of safe transformations because α is an abstraction and we have chosen the mapping functions as before.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

D9. M&S: Maintaining the Abstraction and Shrinking Strategies

Shrinking Strategies

November 15, 2017

. . .

41 / 48

43 / 48

Goal-respecting Bisimulations are Exact (3)

Proof (continued).

- For s'_{*} = ⟨s'₁,...,s'_n⟩ ∈ S'_{*}, each s'_j with j ≠ i must be a goal state of T_j (*) and s'_i must be a goal state of T^α_i. The latter implies that at least on s''_i ∈ α⁻¹(s'_i) is a goal state of T_i. As α is goal-respecting, all states from α⁻¹(s'_i) are goal states of T_i (**). Consider s_{*} = ⟨s₁,...,s_n⟩ ∈ σ⁻¹(s'_{*}). By the definition of σ,
 - consider $s_* = \langle s_1, \ldots, s_n \rangle \in \mathcal{S}^ (s_*)$. By the definition of \mathcal{S}_i , $s_j = s'_j$ for $j \neq i$ and $s_i \in \alpha^{-1}(s'_i)$. From (*) and (**), each s_j $(j \in \{1, \ldots, n\})$ is a goal state of \mathcal{T}_j and, hence, s_* a goal state of \mathcal{T}_X .
- As $\lambda = \text{id}$ and the transformation does not change the label cost function, $c(\ell) = c'(\lambda(\ell))$ for all $\ell \in L$.

Planning and Optimization

Goal-respecting Bisimulations are Exact (2)

Proof (continued).

If ⟨s', ℓ, t'⟩ ∈ T' with s' = ⟨s' ₁ ,,s' _n ⟩ and t' = ⟨t' ₁ ,,t' _n ⟩, then for j ≠ i transition system T _j has transition ⟨s' _j , ℓ, t' _j ⟩ (*) and T _i ^α has transition ⟨s' _i , ℓ, t' _i ⟩. This implies that T _i has a transition ⟨s'' _i , ℓ, t'' _i ⟩ for some s'' _i ∈ α ⁻¹ (s' _i) and t'' _i ∈ α ⁻¹ (t' _i). As α is a bisimulation, there must be such a transition for all such s'' _i and t'' _i (**). Each s ∈ σ ⁻¹ (s') has the form s = ⟨s ₁ ,,s _n ⟩ with s _j = s' _j for j ≠ i and s _i ∈ α ⁻¹ (t'). From (*) and (**) follows that T _j has a transition ⟨s _j , ℓ, t _j ⟩ for all j ∈ {1,,n}, so for each such s and t, T contains the transition ⟨s, ℓ, t⟩.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

November 15, 2017 42 / 48

Shrinking Strategies

D9. M&S: Maintaining the Abstraction and Shrinking Strategies Bisimulations: Discussion

- As all bisimulations preserve all relevant information, we are interested in the coarsest such abstraction (to shrink as much as possible).
- There is always a unique coarsest bisimulation for T and it can be computed efficiently (from the explicit representation).
- In some cases, computing the bisimulation is still too expensive or it cannot sufficiently shrink a transition system.

Greedy Bisimulations

Definition (Greedy Bisimulation) Let $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$ be a transition system. An equivalence relation \sim on S is a greedy bisimulation for \mathcal{T} if it is a bisimulation for the system $\langle S, L, c, T^G, s_0, S_* \rangle$, where $T^G = \{ \langle s, \ell, t \rangle \mid \langle s, \ell, t \rangle \in T, h^*(s) = h^*(t) + c(\ell) \}.$

Greedy bisimulation only considers transitions that are used in an optimal solution of some state of $\mathcal{T}.$

Planning and Optimization

D9. M&S: Maintaining the Abstraction and Shrinking Strategies

M. Helmert, G. Röger (Universität Basel)

Summary

45 / 48

47 / 48

November 15, 2017

D9.3 Summary

Greedy Bisimulation is *h*-preserving

Theorem

Let \mathcal{T} be a transition system and let α be an abstraction of \mathcal{T} . I	f
\sim_{lpha} is a goal-respecting greedy bisimulation for ${\cal T}$ then $h^*_{{\cal T}^{lpha}}=h^*_{{\cal T}}$	·.

(Proof omitted.)

Note: This does not mean that replacing \mathcal{T} with \mathcal{T}^{α} in a collection of transition systems is a safe transformation! Abstraction α preserves solution costs "locally" but not "globally".

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

November 15, 2017

D9. M&S: Maintaining the Abstraction and Shrinking Strategies

Summary

- Merge-and-shrink abstractions are represented by a set of reference tables, one for each atomic abstraction and one for each merge-and-shrink step.
- The heuristic representation uses an additional table for the goal distances in the final abstract transition system.
- Bisimulation is an exact shrinking method.

46 / 48

Summar