Planning and Optimization

D3. Abstractions: Additive Abstractions

Malte Helmert and Gabriele Röger

Universität Basel

November 6, 2017

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 6, 2017 1 / 24

Planning and Optimization

November 6, 2017 — D3. Abstractions: Additive Abstractions

D3.1 Additivity

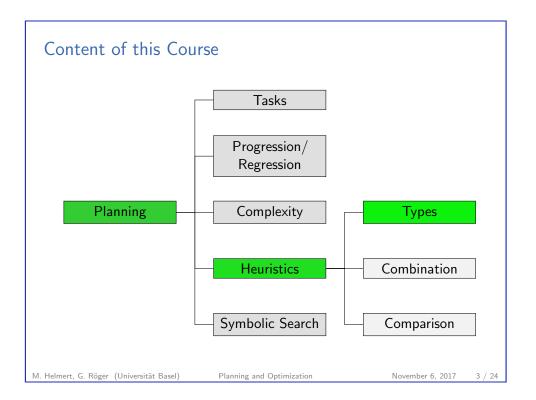
D3.2 Outlook

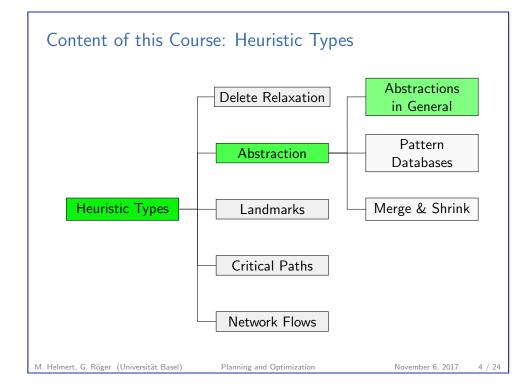
D3.3 Summary

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 6, 2017 2 / 24





D3. Abstractions: Additive Abstractions

D3.1 Additivity

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 6, 2017 5 / 24

D3. Abstractions: Additive Abstractions

Orthogonality of Abstractions

Definition (Orthogonal)

Let α_1 and α_2 be abstractions of transition system \mathcal{T} .

We say that α_1 and α_2 are orthogonal if for all transitions $s \stackrel{\ell}{\to} t$ of \mathcal{T} , we have $\alpha_i(s) = \alpha_i(t)$ for at least one $i \in \{1, 2\}$.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 6, 2017

D3. Abstractions: Additive Abstractions

Affecting Transition Labels

Definition (Affecting Transition Labels)

Let $\mathcal T$ be a transition system, and let ℓ be one of its labels. We say that ℓ affects \mathcal{T} if \mathcal{T} has a transition $s \stackrel{\ell}{\to} t$ with $s \neq t$.

Theorem (Affecting Labels vs. Orthogonality)

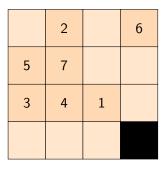
Let α_1 and α_2 be abstractions of transition system \mathcal{T} . If no label of \mathcal{T} affects both \mathcal{T}^{α_1} and \mathcal{T}^{α_2} , then α_1 and α_2 are orthogonal.

(Easy proof omitted.)

D3. Abstractions: Additive Abstractions

Additivity

Orthogonal Abstractions: Example



9		12	
		14	13
			11
15	10	8	

Are the abstractions orthogonal?

M. Helmert, G. Röger (Universität Basel)

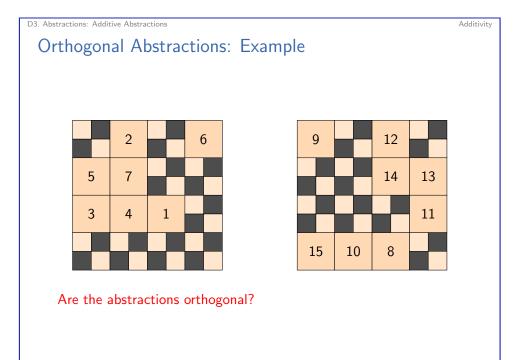
Planning and Optimization

November 6, 2017

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 6, 2017



Planning and Optimization

November 6, 2017

M. Helmert, G. Röger (Universität Basel)

Orthogonality and Additivity: Example

| Continuous Con

D3. Abstractions: Additive Abstractions Additivity

Orthogonality and Additivity

Theorem (Additivity for Orthogonal Abstractions)

Let $h^{\alpha_1}, \ldots, h^{\alpha_n}$ be abstraction heuristics of the same transition system such that α_i and α_j are orthogonal for all $i \neq j$.

Then $\sum_{i=1}^{n} h^{\alpha_i}$ is a safe, goal-aware, admissible and consistent heuristic for Π .

M. Helmert, G. Röger (Universität Basel)

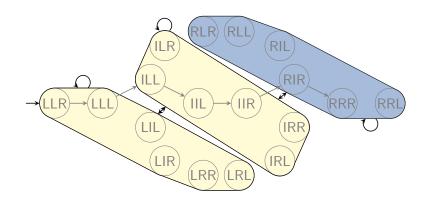
Planning and Optimization

November 6, 2017

10 / 24

D3. Abstractions: Additive Abstractions

Orthogonality and Additivity: Example



abstraction α_1

abstraction: only consider value of first package

M. Helmert, G. Röger (Universität Basel)

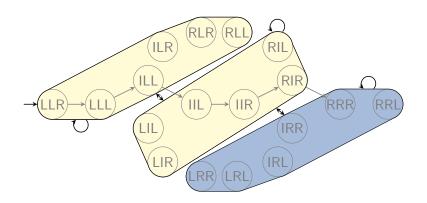
Planning and Optimization

November 6, 2017

12 /

Additivity

Orthogonality and Additivity: Example



abstraction α_2 (orthogonal to α_1) abstraction: only consider value of second package

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 6, 2017

13 / 24

D3. Abstractions: Additive Abstractions

tions Ad

Orthogonality and Additivity: Proof (1)

Proof.

We prove goal-awareness and consistency;

the other properties follow from these two.

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$ be the concrete transition system.

Let
$$h = \sum_{i=1}^n h^{\alpha_i}$$
.

Goal-awareness: For goal states $s \in S_{\star}$,

 $h(s) = \sum_{i=1}^{n} h^{\alpha_i}(s) = \sum_{i=1}^{n} 0 = 0$ because all individual abstraction heuristics are goal-aware.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 6, 2017

14 / 24

D3. Abstractions: Additive Abstractions

Additivity

Orthogonality and Additivity: Proof (2)

Proof (continued).

Consistency: Let $s \xrightarrow{o} t \in T$. We must prove $h(s) \leq c(o) + h(t)$.

Because the abstractions are orthogonal, $\alpha_i(s) \neq \alpha_i(t)$

for at most one $i \in \{1, \dots, n\}$.

Case 1: $\alpha_i(s) = \alpha_i(t)$ for all $i \in \{1, ..., n\}$.

Then
$$h(s) = \sum_{i=1}^{n} h^{\alpha_i}(s)$$

 $= \sum_{i=1}^{n} h^*_{\mathcal{T}^{\alpha_i}}(\alpha_i(s))$
 $= \sum_{i=1}^{n} h^*_{\mathcal{T}^{\alpha_i}}(\alpha_i(t))$
 $= \sum_{i=1}^{n} h^{\alpha_i}(t)$
 $= h(t) < c(o) + h(t)$.

D3. Abstractions: Additive Abstractions

Additivit

Orthogonality and Additivity: Proof (3)

Proof (continued).

Case 2: $\alpha_i(s) \neq \alpha_i(t)$ for exactly one $i \in \{1, ..., n\}$.

Let $k \in \{1, ..., n\}$ such that $\alpha_k(s) \neq \alpha_k(t)$.

Then
$$h(s) = \sum_{i=1}^{n} h^{\alpha_i}(s)$$

 $= \sum_{i \in \{1,...,n\} \setminus \{k\}} h^*_{\mathcal{T}^{\alpha_i}}(\alpha_i(s)) + h^{\alpha_k}(s)$
 $\leq \sum_{i \in \{1,...,n\} \setminus \{k\}} h^*_{\mathcal{T}^{\alpha_i}}(\alpha_i(t)) + c(o) + h^{\alpha_k}(t)$
 $= c(o) + \sum_{i=1}^{n} h^{\alpha_i}(t)$
 $= c(o) + h(t),$

where the inequality holds because $\alpha_i(s) = \alpha_i(t)$ for all $i \neq k$ and h^{α_k} is consistent.

M. Helmert, G. Röger (Universität Basel) Plann

Planning and Optimization

November 6, 2017

M. Helmert, G. Röger (Universität Basel)

anning and Optimization

November 6, 2017

16 / 2

D3. Abstractions: Additive Abstractions

D3.2 Outlook

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 6, 2017

D3. Abstractions: Additive Abstractions

Using Abstraction Heuristics in Practice

In practice, there are conflicting goals for abstractions:

- we want to obtain an informative heuristic, but
- ▶ want to keep its representation small.

Abstractions have small representations if

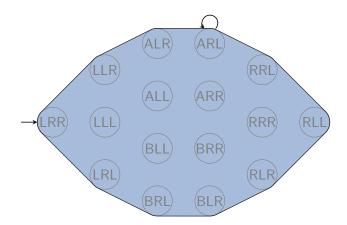
- ▶ there are few abstract states and
- ightharpoonup there is a succinct encoding for α .

M. Helmert, G. Röger (Universität Basel)

November 6, 2017

D3. Abstractions: Additive Abstractions

Counterexample: One-State Abstraction



One-state abstraction: $\alpha(s) := \text{const.}$

- + very few abstract states and succinct encoding for α
- completely uninformative heuristic

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

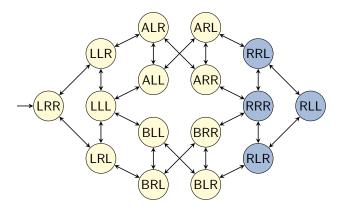
November 6, 2017

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 6, 2017

D3. Abstractions: Additive Abstractions Counterexample: Identity Abstraction



Identity abstraction: $\alpha(s) := s$.

- + perfect heuristic and succinct encoding for lpha
- too many abstract states

D3. Abstractions: Additive Abstractions Counterexample: Perfect Abstraction Perfect abstraction: $\alpha(s) := h^*(s)$. + perfect heuristic and usually few abstract states - usually no succinct encoding for α M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 6, 2017

D3. Abstractions: Additive Abstractions

D3.3 Summary

D3. Abstractions: Additive Abstractions

Automatically Deriving Good Abstraction Heuristics

Abstraction Heuristics for Planning: Main Research Problem Automatically derive effective abstraction heuristics for planning tasks.

we will study two state-of-the-art approaches in Chapters D4-D10

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 6, 2017

D3. Abstractions: Additive Abstractions

Summary

- ► Abstraction heuristics from orthogonal abstractions can be added without losing admissibility or consistency.
- ▶ One sufficient condition for orthogonality is that all abstractions are affected by disjoint sets of labels.
- ▶ Practically useful abstractions are those which give informative heuristics, yet have a small representation.
- Coming up with good abstractions automatically is the main research challenge when applying abstraction heuristics in planning.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 6, 2017

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 6, 2017