

D2.1 Reminder: Transition Systems

M. Helmert, G. Röger (Universität Basel)

November 1, 2017 5 / 38

Planning and Optimization

7 / 38

)2.	Abstractions:	Formal	Definition	and	Heuristics	

Transition Systems

M.

Reminder from Chapter A3:

	Definition (Transition System)					
	A transition system is a 6-tuple $\mathcal{T}=\langle S,L,c,T,s_0,S_{\star} angle$ where					
	 S is a finite set of states, 					
	 L is a finite set of (transition) labels, 					
	• $c: L \to \mathbb{R}^+_0$ is a label cost function,					
	• $T \subseteq S \times L \times S$ is the transition relation,					
	• $s_0 \in S$ is the initial state, and					
	• $S_{\star} \subseteq S$ is the set of goal states.					
	We say that \mathcal{T} has the transition $\langle s, \ell, s' \rangle$ if $\langle s, \ell, s' \rangle \in \mathcal{T}$.					
	We also write this as $s \xrightarrow{\ell} s'$, or $s \rightarrow s'$ when not interested in ℓ .					
Note: Transition systems are also called state spaces.						
Hel	mert, G. Röger (Universität Basel) Planning and Optimization November 1, 2017	6 / 38				

```
D2. Abstractions: Formal Definition and Heuristics

Mapping Planning Tasks to Transition Systems

Reminder from Chapters A4/A8:

Definition (Transition System Induced by a Planning Task)

The planning task \Pi = \langle V, I, O, \gamma \rangle induces

the transition system \mathcal{T}(\Pi) = \langle S, L, c, T, s_0, S_* \rangle, where

• S is the set of all states over state variables V,

• L is the set of operators O,

• c(o) = cost(o) for all operators o \in O,

• T = \{\langle s, o, s' \rangle \mid s \in S, o applicable in s, s' = s[\![o]\!]\},

• s_0 = I, and

• S_* = \{s \in S \mid s \models \gamma\}.
```

M. Helmert, G. Röger (Universität Basel)

Reminder: Transition Systems

Abstractions

Definition (Abstraction)

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$ be a transition system. An abstraction (also: abstraction function, abstraction mapping) of \mathcal{T} is a function $\alpha : S \to S^{\alpha}$ defined on the states of \mathcal{T} , where S^{α} is an arbitrary set.

Without loss of generality, we require that α is surjective.

Intuition: α maps the states of \mathcal{T} to another (usually smaller) abstract state space.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

November 1, 2017 13 / 38

D2. Abstractions: Formal Definition and Heuristics

Abstract Transition System

Definition (Abstract Transition System)

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$ be a transition system, and let $\alpha : S \to S^{\alpha}$ be an abstraction of \mathcal{T} .

The abstract transition system induced by α , in symbols \mathcal{T}^{α} , is the transition system $\mathcal{T}^{\alpha} = \langle S^{\alpha}, L, c, T^{\alpha}, s_{0}^{\alpha}, S_{\star}^{\alpha} \rangle$ defined by:

Planning and Optimization

- $T^{\alpha} = \{ \langle \alpha(s), \ell, \alpha(t) \rangle \mid \langle s, \ell, t \rangle \in T \}$
- $\blacktriangleright s_0^{\alpha} = \alpha(s_0)$
- ► $S^{\alpha}_{\star} = \{\alpha(s) \mid s \in S_{\star}\}$

M. Helmert, G. Röger (Universität Basel)

November 1, 2017

14 / 38

D2. Abstractions: Formal Definition and Heuristics

Homomorphisms and Isomorphisms

Homomorphisms and Isomorphisms

- The abstraction mapping α that transforms T to T^α is also called a strict homomorphism from T to T^α.
- Roughly speaking, in mathematics a homomorphism is a property-preserving mapping between structures.
- A strict homomorphism is one where no additional features are introduced. A non-strict homomorphism in planning would mean that the abstract transition system may include additional transitions and goal states not induced by α.
- We only consider strict homomorphisms in this course.
- If α is bijective, it is called an isomorphism between \mathcal{T} and \mathcal{T}^{α} , and the two transition systems are called isomorphic.

D2. Abstractions: Formal Definition and Heuristics

D2.3 Homomorphisms and Isomorphisms

M. Helmert, G. Röger (Universität Basel)

D2. Abstractions: Formal Definition and Heuristics

Homomorphisms and Isomorphisms

18 / 38

November 1, 2017

Isomorphic Transition Systems

The notion of isomorphic transition systems is important enough to warrant a formal definition:

Planning and Optimization

Definition (Isomorphic Transition Systems) Let $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$ and $\mathcal{T}' = \langle S', L', c', T', s'_0, S'_{\star} \rangle$ be transition systems.

We say that \mathcal{T} is isomorphic to \mathcal{T}' , in symbols $\mathcal{T} \sim \mathcal{T}'$, if there exist bijective functions $\varphi : S \to S'$ and $\lambda : L \to L'$ such that:

•
$$c'(\lambda(\ell)) = c(\ell)$$
 for all $\ell \in L$,

- $\blacktriangleright \ s \xrightarrow{\ell} t \in T \text{ iff } \varphi(s) \xrightarrow{\lambda(\ell)} \varphi(t) \in T',$
- $\varphi(s_0) = s'_0$, and
- ▶ $s \in S_{\star}$ iff $\varphi(s) \in S'_{\star}$.

Graph-Equivalent Transition Systems

Sometimes a weaker notion of equivalence is useful:

Definition (Graph-Equivalent Transition Systems) Let $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$ and $\mathcal{T}' = \langle S', L', c, T', s'_0, S'_* \rangle$ be transition systems.

We say that \mathcal{T} is graph-equivalent to \mathcal{T}' , in symbols $\mathcal{T} \stackrel{\mathsf{G}}{\sim} \mathcal{T}'$, if there exists a bijective function $\varphi : S \to S'$ such that:

- There is a transition $s \xrightarrow{\ell} t \in T$ with $c(\ell) = k$ iff there is a transition $\varphi(s) \xrightarrow{\ell'} \varphi(t) \in T'$ with $c'(\ell') = k$,
- $\varphi(s_0) = s'_0$, and
- ► $s \in S_{\star}$ iff $\varphi(s) \in S'_{\star}$.

Note: The labels of \mathcal{T} and \mathcal{T}' do not matter except that transitions of the same cost must be preserved.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

November 1, 2017 21 / 38

D2. Abstractions: Formal Definition and Heuristics

Abstraction Heurist

D2.4 Abstraction Heuristics

Isomorphism vs. Graph Equivalence

- (~) and $(\stackrel{\mathsf{G}}{\sim})$ are equivalence relations.
- Two isomorphic transition systems are interchangeable for all practical intents and purposes.
- Two graph-equivalent transition systems are interchangeable for most intents and purposes.
- ▶ In particular, their goal distances are identical.
- Isomorphism implies graph equivalence, but not vice versa.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

November 1, 2017

22 / 38

Abstraction Heuristics

D2. Abstractions: Formal Definition and Heuristics

Abstraction Heuristics

Definition (Abstraction Heuristic)

Let $\alpha: S \to S^{\alpha}$ be an abstraction of a transition system \mathcal{T} . The abstraction heuristic induced by α , written h^{α} , is the heuristic function $h^{\alpha}: S \to \mathbb{R}^+_0 \cup \{\infty\}$ defined as

 $h^{\alpha}(s) = h^*_{\mathcal{T}^{\alpha}}(\alpha(s))$ for all $s \in S$,

where $h^*_{\mathcal{T}^{\alpha}}$ denotes the goal distance function in \mathcal{T}^{α} .

Notes:

- $h^{\alpha}(s) = \infty$ if no goal state of \mathcal{T}^{α} is reachable from $\alpha(s)$
- We also apply abstraction terminology to planning tasks Π, which stand for their induced transition systems.
 For example, an abstraction of Π is an abstraction of T(Π).

Planning and Optimization

Proof (continued).

Consistency: Consider any state transition $s \xrightarrow{\ell} t$ of \mathcal{T} . We need to show $h^{\alpha}(s) \leq c(\ell) + h^{\alpha}(t)$. By the definition of \mathcal{T}^{α} , we get $\alpha(s) \xrightarrow{\ell} \alpha(t) \in \mathcal{T}^{\alpha}$.

Hence, $\alpha(t)$ is a successor of $\alpha(s)$ in \mathcal{T}^{α} via the label ℓ .

We get:

 $egin{aligned} h^lpha(s) &= h^*_{\mathcal{T}^lpha}(lpha(s)) \ &\leq c(\ell) + h^*_{\mathcal{T}^lpha}(lpha(t)) \ &= c(\ell) + h^lpha(t), \end{aligned}$

where the inequality holds because perfect goal distances $h^*_{\mathcal{T}^{\alpha}}$ are consistent in \mathcal{T}^{α} .

(The shortest path from $\alpha(s)$ to the goal in \mathcal{T}^{α} cannot be longer than the shortest path from $\alpha(s)$ to the goal via $\alpha(t)$.)

Planning and Optimization

27 / 38

Abstraction Heuristics

Consistency of Abstraction Heuristics (1)

Theorem (Consistency and Admissibility of h^{α}) Let α be an abstraction of a transition system \mathcal{T} . Then h^{α} is safe, goal-aware, admissible and consistent.

Proof.

We prove goal-awareness and consistency; the other properties follow from these two.

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$. Let $\mathcal{T}^{\alpha} = \langle S^{\alpha}, L, c, T^{\alpha}, s_0^{\alpha}, S_{\star}^{\alpha} \rangle$.

Goal-awareness: We need to show that $h^{\alpha}(s) = 0$ for all $s \in S_{\star}$, so let $s \in S_{\star}$. Then $\alpha(s) \in S_{\star}^{\alpha}$ by the definition of abstract transition systems, and hence $h^{\alpha}(s) = h_{T^{\alpha}}^{*}(\alpha(s)) = 0$

Planning and Optimization

```
M. Helmert, G. Röger (Universität Basel)
```

November 1, 2017 26 / 38

D2. Abstractions: Formal Definition and Heuristics Coarsenings and Refinements D2.5 Coarsenings and Refinements

D2. Abstractions: Formal Definition and Heuristics

Coarsenings and Refinements

Abstractions of Abstractions

Since abstractions map transition systems to transition systems, they are composable:

- Using a first abstraction $\alpha : S \to S'$, map \mathcal{T} to \mathcal{T}^{α} .
- Using a second abstraction $\beta: S' \to S''$, map \mathcal{T}^{α} to $(\mathcal{T}^{\alpha})^{\beta}$.

The result is the same as directly using the abstraction $(\beta \circ \alpha)$:

- Let $\gamma : S \to S''$ be defined as $\gamma(s) = (\beta \circ \alpha)(s) = \beta(\alpha(s))$.
- Then $\mathcal{T}^{\gamma} = (\mathcal{T}^{\alpha})^{\beta}$.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization

November 1, 2017 29 / 38

Heuristic Quality of Refinements: Proof

Coarsenings and Refinements

Proof.

Since α is a refinement of γ , there exists a function β with $\gamma = \beta \circ \alpha$. For all states s of Π , we get:

$$egin{aligned} h^\gamma(s) &= h^*_{\mathcal{T}^\gamma}(\gamma(s)) \ &= h^*_{\mathcal{T}^\gamma}(eta(lpha(s))) \ &= h^eta_{\mathcal{T}^lpha}(lpha(s)) \ &\leq h^*_{\mathcal{T}^lpha}(lpha(s)) \ &= h^lpha(s), \end{aligned}$$

where the inequality holds because $h_{T\alpha}^{\beta}$ is an admissible heuristic in the transition system \mathcal{T}^{α} .

Planning and Optimization

