Planning and Optimization

D1. Abstractions: Introduction

Malte Helmert and Gabriele Roger

Universitat Basel

November 1, 2017

Content of this Course

—| Tasks |

Progression/
Regression

M | Comvieity
- [Heuristics |

—| Combination |

—| Symbolic Search |

—| Comparison |

Content of this Course: Heuristic Types

; Abstractions
—| Delete Relaxation | — .
in General
; Pattern
—| Abstraction I
Databases

_——| Landmarks | —{ Merge & Shrink

—| Critical Paths |

—| Network Flows |

Introduction

Introduction

Oe00000

Coming Up with Heuristics in a Principled Way

General Procedure for Obtaining a Heuristic
Solve a simplified version of the problem.

Major ideas for heuristics in the planning literature:

o delete relaxation
@ abstraction

@ landmarks

@ critical paths

@ network flows

Heuristics based on abstraction are among the most prominent
techniques for optimal planning.

Introduction
fe]e] Yololele}

Abstracting a Transition System

Abstracting a transition system means dropping some distinctions
between states, while preserving the transition behaviour as much
as possible.

@ An abstraction of a transition system 7T is defined by an
abstraction mapping « that defines which states of 7
should be distinguished and which ones should not.

@ From 7 and o, we compute an abstract transition system 7
which is similar to 7, but smaller.

@ The abstract goal distances (goal distances in 7¢)
are used as heuristic estimates for goal distances in 7T .

Introduction ctical Requirements Multi bstractions Outlo Summar
[e]e]eY Tolele} 00) 00

Abstracting a Transition System: Example

Example (15-Puzzle)

A 15-puzzle state is given by a permutation (b, t1, ..., t15)
of {1,...,16}, where b denotes the blank position
and the other components denote the positions of the 15 tiles.

One possible abstraction mapping ignores the precise location
of tiles 8-15, i.e., two states are distinguished iff they differ
in the position of the blank or one of the tiles 1-7:

Oé((b, t1,..., t15>) = (b, t1,..., t7>

The heuristic values for this abstraction correspond to the cost
of moving tiles 1-7 to their goal positions.

Introduction Practical Requirements Multiple Abstractions © Summar
0000e00 [e]e]e] 0000« O 50

Abstraction Example: 15-Puzzle

9 2 12 6 1 2 3 4
5 7 14 | 13 5 6 7 8
3 4 1 11 9 10 | 11 | 12

o

real state space:
e 16! = 20922789888000 ~ 2 - 10'3 states
o 18! — 10461394944000 ~ 10'3 reachable states

Introduction
0000800

Abstraction Example: 15-Puzzle

2 6 1 2 3 4
5 7 5 6 7
3 4 1

abstract state space:

@ 16-15-...-9 =518918400 ~ 5 - 102 states
@ 16-15-...-9 =518918400 ~ 5 - 108 reachable states

Introduction
00000e0

Computing the Abstract Transition System

Given T and «, how do we compute 77

Requirement

We want to obtain an admissible heuristic.
Hence, h*(a(s)) (in the abstract state space 7<) should never
overestimate h*(s) (in the concrete state space 7).

An easy way to achieve this is to ensure that all solutions in T
are also present in 7
e If s is a goal state in 7, then a(s) is a goal state in 7.

o If 7 has a transition from s to t, then T¢
has a transition from «(s) to «(t).

Introduction
000000e

Computing the Abstract Transition System: Example

Example (15-Puzzle)

In the running example:
@ 7 has the unique goal state (16,1,2,...,15).
~» T has the unique goal state (16,1,2,...,7).
@ Let x and y be neighbouring positions in the 4 x 4 grid.

T has a transition from (x, t1,...,ti_1,¥, tit1,..., ti5)
to <y, ti, ..., -1, X, tig1,. .., t15> for all i € {1, ceey 15}.
~» T has a transition from (x,t1,...,ti—1,¥, tit1,- .-, t7)

to (y,t1, ..., ti1, X, tig1,..., t7) forall i e {1,...,7}.
~» Moreover, T has a transition from (x, ti, ..., t7)

to <y7t17"'7t7> Ify¢{t17at7}

Practical Requirements

Practical Requirements
oeo

Practical Requirements for Abstractions

To be useful in practice, an abstraction heuristic must be efficiently
computable. This gives us two requirements for a:

e For a given state s, the abstract state a(s)
must be efficiently computable.

e For a given abstract state «a(s), the abstract goal distance
h*(c(s)) must be efficiently computable.

There are a number of ways of achieving these requirements:
@ pattern database heuristics (Culberson & Schaeffer, 1996)

e merge-and-shrink abstractions (Drager, Finkbeiner &
Podelski, 2006)

o Cartesian abstractions (Ball, Podelski & Rajamani, 2001)
e structural patterns (Katz & Domshlak, 2008b)

Practical Requirements Y bstractions Outlook Summar
ooe

Practical Requirements for Abstractions: Example

Example (15-Puzzle)

In our running example, a can be very efficiently computed:
just project the given 16-tuple to its first 8 components.

To compute abstract goal distances efficiently during search,
the most common approach is to precompute all abstract goal
distances prior to search by performing a backward uniform-cost
search from the abstract goal state(s). These distances are then
stored in a table (requires ~ 495 MiB RAM).

During search, computing h*(«(s)) is just a table lookup.

This heuristic is an example of a pattern database heuristic.

Multiple Abstractions

90000

Multiple Abstractions

Multiple Abstractions
0@000

Multiple Abstractions

@ One important practical question is how to come up
with a suitable abstraction mapping a.

@ Indeed, there is usually a huge number of possibilities,
and it is important to pick good abstractions
(i.e., ones that lead to informative heuristics).

@ However, it is generally not necessary to commit
to a single abstraction.

Multiple Abstractions
00®00

Combining Multiple Abstractions

Maximizing several abstractions:
@ Each abstraction mapping gives rise to an admissible heuristic.

@ By computing the maximum of several admissible heuristics,
we obtain another admissible heuristic which dominates
the component heuristics.

@ Thus, we can always compute several abstractions and
maximize over the individual abstract goal distances.

Adding several abstractions:
@ In some cases, we can even compute the sum
of individual estimates and still stay admissible.
@ Summation often leads to much higher estimates

than maximization, so it is important to understand
under which conditions summation of heuristics is admissible.

Multiple Abstractions
000®0

Maximizing Several Abstractions: Example

Example (15-Puzzle)

@ mapping to tiles 1-7 was arbitrary
~~ can use any subset of tiles

@ with the same amount of memory required for the tables
for the mapping to tiles 1-7, we could store the tables
for nine different abstractions to six tiles and the blank

@ use maximum of individual estimates

Practical Requirements Multiple Abstractions
0000e

Adding Several Abstractions: Example

9 2 12 6 9 2 12 6
5 7 14 | 13 5 7 14 | 13
3 4 1 11 3 4 1 11

15 | 10 | 8 . 15 | 10 | 8 .

@ 1st abstraction: ignore precise location of 8-15

@ 2nd abstraction: ignore precise location of 1-7

~ |s the sum of the abstraction heuristics admissible?

Multiple Abstractions
0000e

Adding Several Abstractions: Example

2 6 9 12
5 7 14 | 13
3 4 1 11

15 | 10 | 8 .

@ 1st abstraction: ignore precise location of 8-15

@ 2nd abstraction: ignore precise location of 1-7

~» The sum of the abstraction heuristics is not admissible.

Multiple Abstractions
0000e

Adding Several Abstractions: Example

@ 1st abstraction: ignore precise location of 8-15 and blank
@ 2nd abstraction: ignore precise location of 1-7 and blank

~» The sum of the abstraction heuristics is admissible.

Outlook

Outlook
oce

Our Plan for the Next Lectures

In the following, we take a deeper look at abstractions
and their use for admissible heuristics.

In Chapters D2-D3, we formally introduce
abstractions and abstraction heuristics
and study some of their most important properties.

Afterwards, we discuss some particular classes
of abstraction heuristics in detail, namely

@ pattern database heuristics (D4-D6) and
@ merge-and-shrink abstractions (D7-D10).

Summary

Summary
oce

Summary

@ Abstraction is one of the principled ways of deriving heuristics
for planning tasks and transition systems in general.

@ The key idea is to map states to a smaller abstract transition
system 7“ by means of an abstraction function a.

@ Goal distances in 7 are then used as admissible estimates
for goal distances in the original transition system.

@ To be practical, we must be able to compute abstraction
functions and determine abstract goal distances efficiently.

e Often, multiple abstractions are used.
They can always be maximized admissibly.

@ Adding abstraction heuristics is not always admissible.
When it is, it leads to a stronger heuristic than maximizing.

	Introduction
	Practical Requirements
	Multiple Abstractions
	Outlook
	Summary

