Planning and Optimization

C4. Delete Relaxation: Relaxed Task Graphs

Malte Helmert and Gabriele Röger

Universität Basel

October 25, 2017

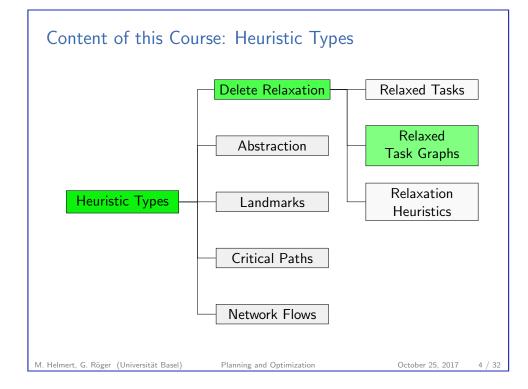
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 25, 2017 1 / 32

Planning and Optimization

October 25, 2017 — C4. Delete Relaxation: Relaxed Task Graphs


- C4.1 Relaxed Task Graphs
- C4.2 Construction
- C4.3 Reachability Analysis
- C4.4 Remarks
- C4.5 Summary

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 25, 2017 2 / 32

Content of this Course Tasks Progression/ Regression **Planning** Complexity **Types** Heuristics Combination Symbolic Search Comparison M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 25, 2017

Relaxed Task Graphs

C4.1 Relaxed Task Graphs

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 25, 2017

C4. Delete Relaxation: Relaxed Task Graphs

Relaxed Task Graphs

Relaxed Task Graphs

Let Π^+ be a relaxed planning task.

The relaxed task graph of Π^+ , in symbols $RTG(\Pi^+)$, is an AND/OR graph that encodes

- which state variables can become true in an applicable operator sequence for Π^+ ,
- \triangleright which operators of Π^+ can be included in an applicable operator sequence for Π^+ ,
- \triangleright if the goal of Π^+ can be reached,
- ▶ and how these things can be achieved.

We present its definition in stages.

Note: Throughout this chapter, we assume effect normal form.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 25, 2017

C4. Delete Relaxation: Relaxed Task Graphs

Relaxed Task Graphs

Running Example

As a running example, consider the relaxed planning task $\langle V, I, \{o_1, o_2, o_3, o_4\}, \gamma \rangle$ with

$$V = \{a, b, c, d, e, f, g, h\}$$

$$I = \{a \mapsto \mathbf{T}, b \mapsto \mathbf{T}, c \mapsto \mathbf{F}, d \mapsto \mathbf{T},$$

$$e \mapsto \mathbf{F}, f \mapsto \mathbf{F}, g \mapsto \mathbf{F}, h \mapsto \mathbf{F}\}$$

$$o_1 = \langle c \lor (a \land b), c \land ((c \land d) \rhd e), 1 \rangle$$

$$o_2 = \langle \top, f, 2 \rangle$$

$$o_3 = \langle f, g, 1 \rangle$$

$$o_4 = \langle f, h, 1 \rangle$$

$$\gamma = e \land (g \land h)$$

C4. Delete Relaxation: Relaxed Task Graphs

C4.2 Construction

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 25, 2017

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Components of Relaxed Task Graphs

A relaxed task graph has four kinds of components:

- ▶ Variable node represent the state variables.
- ► The initial node represent the initial state.
- Operator subgraphs represent the preconditions and effects of operators.
- ► The goal subgraph represents the goal.

The idea is to construct the graph in such a way that all nodes representing reachable aspects of the task are forced true.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 25, 2017

C4. Delete Relaxation: Relaxed Task Graphs

Variable Nodes

Let $\Pi^+ = \langle V, I, O^+, \gamma \rangle$ be a relaxed planning task.

▶ For each $v \in V$, $RTG(\Pi^+)$ contains an OR node n_v . These nodes are called variable nodes.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 25, 2017

C4. Delete Relaxation: Relaxed Task Graphs

Variable Nodes: Example

$$V = \{a, b, c, d, e, f, g, h\}$$

C4. Delete Relaxation: Relaxed Task Graphs

Initial Node

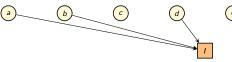
Let $\Pi^+ = \langle V, I, O^+, \gamma \rangle$ be a relaxed planning task.

- $ightharpoonup RTG(\Pi^+)$ contains an AND node n_I . This node is called the initial node.
- ▶ For all $v \in V$ with $I(v) = \mathbf{T}$, $RTG(\Pi^+)$ has an arc from n_v to n_I . These arcs are called initial state arcs.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 25, 2017


M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Construction

Initial Node and Initial State Arcs: Example

 $I = \{a \mapsto \mathsf{T}, b \mapsto \mathsf{T}, c \mapsto \mathsf{F}, d \mapsto \mathsf{T}, e \mapsto \mathsf{F}, f \mapsto \mathsf{F}, g \mapsto \mathsf{F}, h \mapsto \mathsf{F}\}$

e

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 25, 2017

13 / 32

C4. Delete Relaxation: Relaxed Task Graphs

Construction

Operator Subgraphs

Let $\Pi^+ = \langle V, I, O^+, \gamma \rangle$ be a relaxed planning task. For each operator $o^+ \in O^+$, $RTG(\Pi^+)$ contains an operator subgraph with the following parts:

- for each formula φ that occurs as a subformula of the precondition or of some effect condition of o^+ , a formula node n_{φ} (details follow)
- for each conditional effect $(\chi \rhd v)$ that occurs in the effect of o^+ , an effect node $n_{o^+}^{\chi}$ (details follow); unconditional effects are treated as $(\top \rhd v)$

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 25, 2017

14 / 32

C4. Delete Relaxation: Relaxed Task Graphs

Construction

Formula Nodes

Formula nodes n_{φ} are defined as follows:

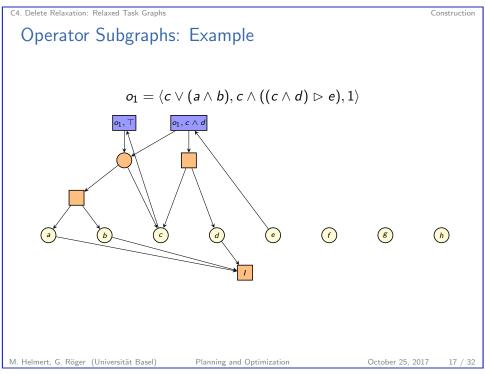
- ▶ If $\varphi = v$ for some state variable v, n_{φ} is the variable node n_{v} (so no new node is introduced).
- ▶ If $\varphi = \top$, n_{φ} is an AND node without outgoing arcs.
- ▶ If $\varphi = \bot$, n_{φ} is an OR node without outgoing arcs.
- ▶ If $\varphi = (\varphi_1 \land \varphi_2)$, n_{φ} is an AND node with outgoing arcs to n_{φ_1} and n_{φ_2} .
- ▶ If $\varphi = (\varphi_1 \vee \varphi_2)$, n_{φ} is an OR node with outgoing arcs to n_{φ_1} and n_{φ_2} .

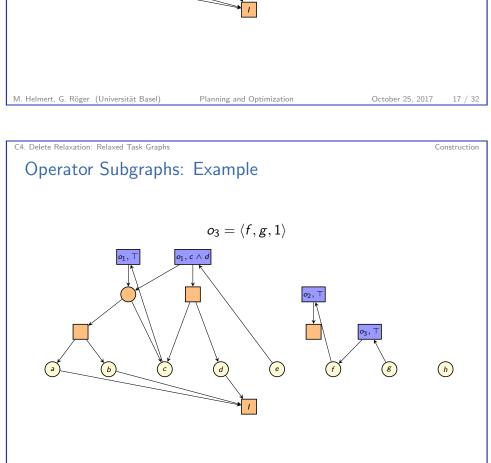
Note: identically named nodes are identical, so if the same formula occurs multiple times in the task, the same node is reused.

C4. Delete Relaxation: Relaxed Task Graphs

Construction

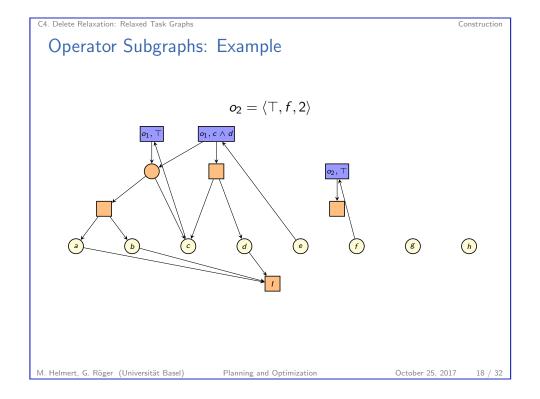
Effect Nodes

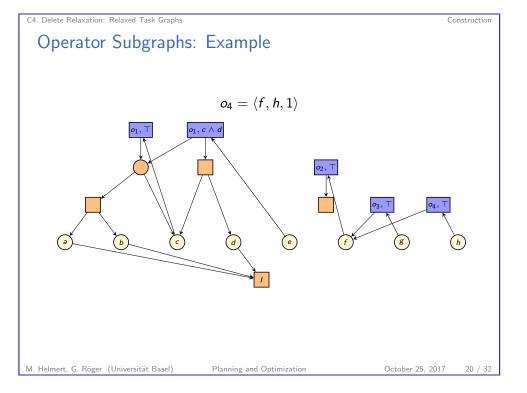

Effect nodes $n_{o^+}^{\chi}$ are defined as follows:


- $ightharpoonup n_{o^+}^{\chi}$ is an AND node
- ▶ It has an outgoing arc to the formula nodes $n_{pre(o^+)}$ (precondition arcs) and n_χ (effect condition arcs).
- Exception: if $\chi = \top$, there is no effect condition arc. (This makes our pictures cleaner.)
- ► For every conditional effect $(\chi \rhd v)$ in the operator, there is an arc from variable node n_v to $n_{o^+}^{\chi}$ (effect arcs).

Note: identically named nodes are identical, so if the same effect condition occurs multiple times in the same operator, this only induces one node.

M. Helmert, G. Röger (Universität Basel)


Planning and Optimization



Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

Construction

Goal Subgraph

Let $\Pi^+ = \langle V, I, O^+, \gamma \rangle$ be a relaxed planning task.

 $RTG(\Pi^+)$ contains a goal subgraph, consisting of formula nodes for the goal γ and its subformulas, constructed in the same way as formula nodes for preconditions and effect conditions.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 25, 2017

21 / 32

C4. Delete Relaxation: Relaxed Task Graphs

Reachability Analysis

C4.3 Reachability Analysis

Goal Subgraph and Final Relaxed Task Graph: Example $\gamma = e \wedge (g \wedge h)$

C4. Delete Relaxation: Relaxed Task Graphs

M. Helmert, G. Röger (Universität Basel)

Reachability Analysis

October 25, 2017

How Can We Use Relaxed Task Graphs?

▶ We are now done with the definition of relaxed task graphs.

Planning and Optimization

- Now we want to use them to derive information about planning tasks.
- ► In the following chapter, we will use them to compute heuristics for delete-relaxed planning tasks.
- ▶ Here, we start with something simpler: reachability analysis.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Forced True Nodes and Reachability

Theorem (Forced True Nodes vs. Reachability)

Let $\Pi^+ = \langle V, I, O^+, \gamma \rangle$ be a relaxed planning task, and let N_T be the forced true nodes of $RTG(\Pi^+)$.

For all formulas over state variables φ that occur in the definition of Π^+ :

 φ is true in some reachable state of Π^+ iff $\mathbf{n}_{\varphi} \in \mathbf{N_T}$.

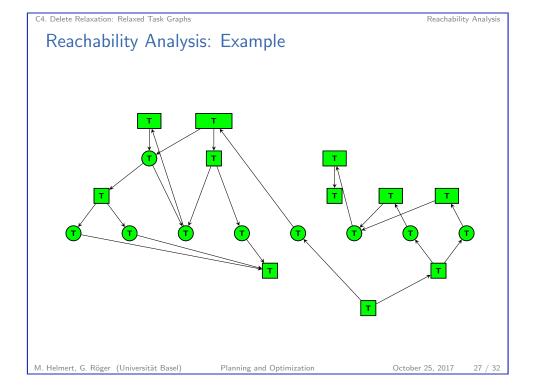
(We omit the proof.)

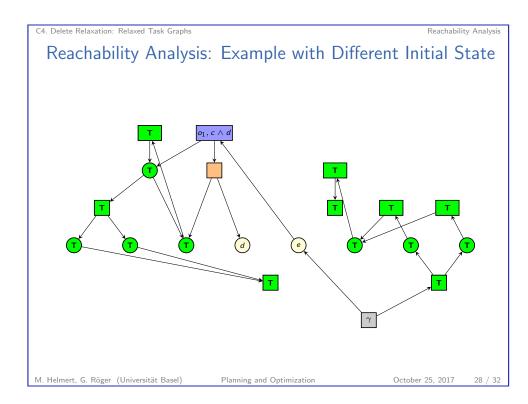
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 25, 2017

Corollary


Let $\Pi^+ = \langle V, I, O^+, \gamma \rangle$ be a relaxed planning task, and let N_T be the forced true nodes of $RTG(\Pi^+)$. Then:


Forced True Nodes and Reachability: Consequences

- ightharpoonup A state variable $v \in V$ is true in at least one reachable state iff $n_v \in N_T$.
- ▶ An operator $o^+ \in O^+$ is part of at least one applicable operator sequence iff $n_{pre(o^+)} \in N_T$.
- ▶ The relaxed task is solvable iff $n_{\gamma} \in N_{\mathbf{T}}$.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

C4.4 Remarks

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 25, 2017

29 / 32

r lanning and Optimizatio

October 25, 2017

30 / 32

C4. Delete Relaxation: Relaxed Task Graphs

Summary

C4.5 Summary

C4. Delete Relaxation: Relaxed Task Graphs

Relaxed Task Graphs in the Literature

Some remarks on the planning literature:

- Usually, only the STRIPS case is studied.
- definitions simpler: only variable nodes and operator nodes, no formula nodes or effect nodes
- ► Usually, so-called relaxed planning graphs (RPGs) are studied instead of RTGs.
- ► These are temporally unrolled versions of RTGs, i.e., they have multiple layers ("time steps") and are acyclic.
- ~ Chapters 35-36 of the Foundations of Artificial Intelligence course at http://cs.unibas.ch/fs2017/foundations-of-artificial-intelligence/.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

C4. Delete Relaxation: Relaxed Task Graphs

Summar

Summary

- ► Relaxed task graphs (RTGs) represent (most of) the information of a relaxed planning task as an AND/OR graph.
- ► They consist of:

M. Helmert, G. Röger (Universität Basel)

- variable nodes
- an initial node
- operator subgraphs including formula nodes and effect nodes
- ▶ a goal subgraph including formula nodes
- ► RTGs can be used to analyze reachability in relaxed tasks: forced true nodes mean "reachable", other nodes mean "unreachable".

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 25, 2017 31 / 3

Planning and Optimization

October 25, 2017

32 / 32