

C1. Delete Relaxation: Introduction

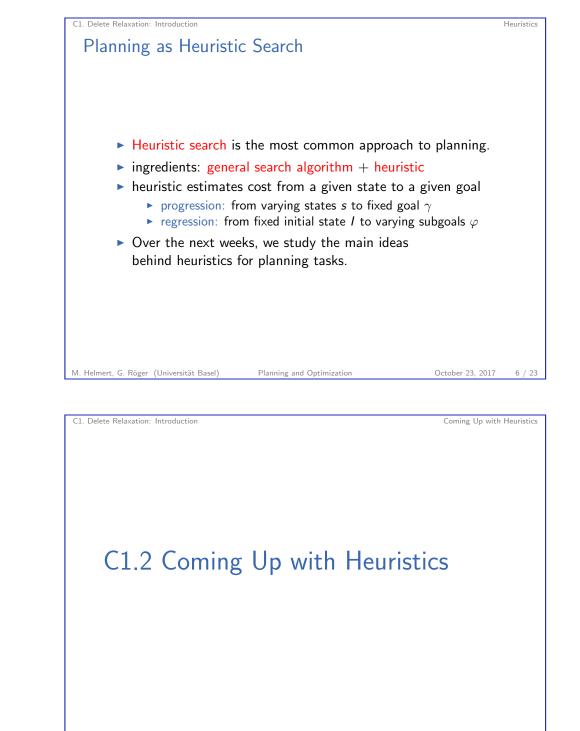
Reminder: Heuristics

Need to Catch Up?

- ► We assume familiarity with heuristics and their properties:
 - heuristic $h: S \to \mathbb{R}^+_0 \cup \{\infty\}$
 - ▶ perfect heuristic h*: h*(s) cost of optimal solution from s (∞ if unsolvable)
 - properties of heuristics h:
 - ▶ safe: $(h(s) = \infty \Rightarrow h^*(s) = \infty)$ for all states s
 - goal-aware: h(s) = 0 for all goal states s
 - admissible: $h(s) \le h^*(s)$ for all states s
 - consistent: $h(s) \leq cost(o) + h(s')$ for all transitions $s \xrightarrow{o} s'$
 - connections between these properties
- If you are not familiar with these topics, we recommend Chapters 13–14 of the Foundations of Artificial Intelligence course at http://cs.unibas.ch/fs2017/ foundations-of-artificial-intelligence/.

Planning and Optimization

7 / 23



Planning and Optimization

C1. Delete Relaxation: Introduction

Coming Up with Heuristics

A Simple Heuristic for Propositional Planning Tasks

STRIPS (Fikes & Nilsson, 1971) used the number of state variables that differ in current state s and a STRIPS goal $v_1 \land \cdots \land v_n$:

 $h(s) := |\{i \in \{1,\ldots,n\} \mid s \not\models v_i\}|.$

Planning and Optimization

Intuition: more satisfied goal atoms \rightsquigarrow closer to the goal

→ STRIPS heuristic (a.k.a. goal-count heuristic) (properties?)

M. Helmert, G. Röger (Universität Basel)

October 23, 2017

Coming Up with Heuristics

9 / 23

C1. Delete Relaxation: Introduction

General Procedure for Obtaining a Heuristic

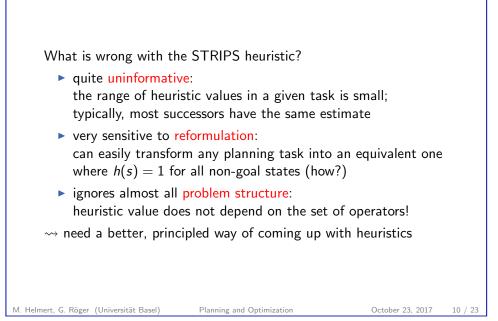
- Simplify the problem, for example by removing problem constraints.
- Solve the simplified problem (ideally optimally).
- Use the solution cost for the simplified problem as a heuristic for the real problem.

As heuristic values are computed for every generated search state, it is important that they can be computed efficiently.

C1. Delete Relaxation: Introduction

Criticism of the STRIPS Heuristic

Coming Up with Heuristics



C1. Delete Relaxation: Introduction

Coming Up with Heuristics

Relaxing a Problem: Example

Example (Route Planning in a Road Network)

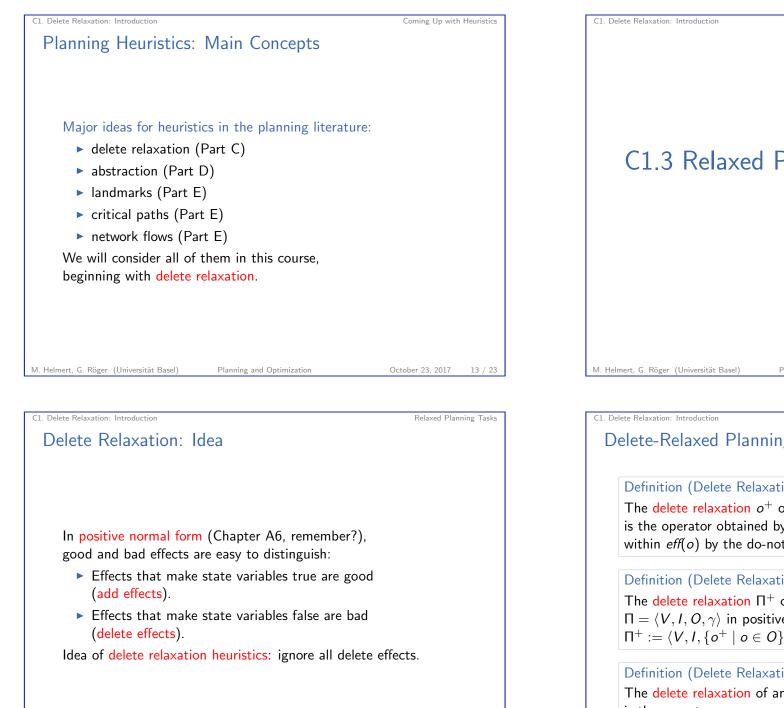
The road network is formalized as a weighted graph over points in the Euclidean plane. The weight of an edge is the road distance between two locations.

Example (Relaxation for Route Planning)

Use the Euclidean distance $\sqrt{|x_1 - x_2|^2 + |y_1 - y_2|^2}$ as a heuristic for the road distance between $\langle x_1, y_1 \rangle$ and $\langle x_2, y_2 \rangle$ This is a lower bound on the road distance (\rightsquigarrow admissible).

 \rightsquigarrow We drop the constraint of having to travel on roads.

M. Helmert, G. Röger (Universität Basel)



C1.3 Relaxed Planning Tasks Planning and Optimization October 23, 2017 14 / 23

Relaxed Planning Tasks

Relaxed Planning Tasks

Delete-Relaxed Planning Tasks

Definition (Delete Relaxation of Operators)

The delete relaxation o^+ of an operator o in positive normal form is the operator obtained by replacing all negative effects $\neg a$ within *eff*(o) by the do-nothing effect \top .

Definition (Delete Relaxation of Propositional Planning Tasks) The delete relaxation Π^+ of a propositional planning task $\Pi = \langle V, I, O, \gamma \rangle$ in positive normal form is the planning task $\Pi^+ := \langle V, I, \{ o^+ \mid o \in O \}, \gamma \rangle.$

Definition (Delete Relaxation of Operator Sequences) The delete relaxation of an operator sequence $\pi = \langle o_1, \ldots, o_n \rangle$ is the operator sequence $\pi^+ := \langle o_1^+, \dots, o_n^+ \rangle$.

Planning and Optimization

Note: "delete" is often omitted: relaxation, relaxed

- Planning tasks in positive normal form without delete effects are called relaxed planning tasks.
- Plans for relaxed planning tasks are called relaxed plans.
- If Π is a planning task in positive normal form and π^+ is a plan for Π^+ , then π^+ is called a relaxed plan for Π .

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

October 23, 2017

17 / 23

The Domination Lemma

October 23, 2017

C1. Delete Relaxation: Introduction

Planning and Optimization

Domination Lemma (1)

C1. Delete Relaxation: Introduction

Lemma (Domination)

Let s and s' be valuations of a set of propositional variables V, and let χ be a propositional formula over V which does not contain negation symbols.

Planning and Optimization

If $s \models \chi$ and s' dominates s, then $s' \models \chi$.

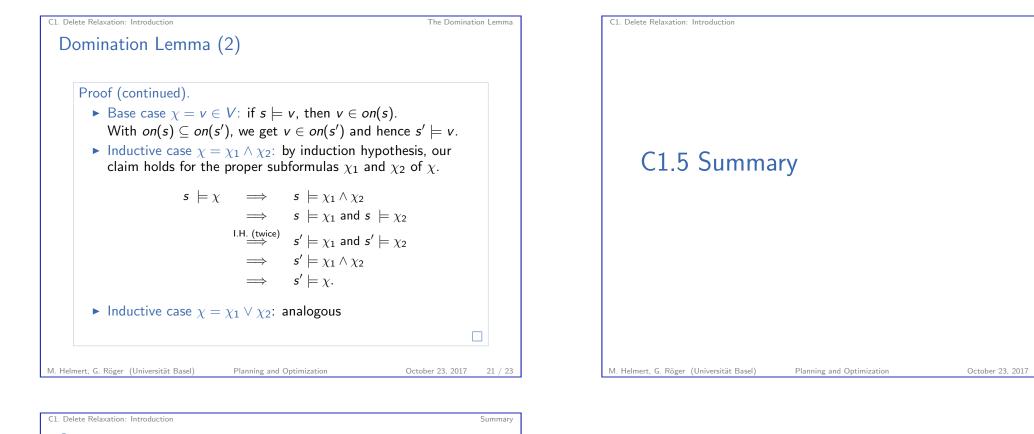
Proof.

Proof by induction over the structure of χ .

- ▶ Base case $\chi = \top$: then $s' \models \top$.
- ▶ Base case $\chi = \bot$: then $s \not\models \bot$.

. . .

The Domination Lemma



Summary

22 / 23

Summary

- A general way to come up with heuristics: solve a simplified version of the real problem, for example by removing problem constraints.
- delete relaxation: given a task in positive normal form, discard all delete effects

Planning and Optimization

 domination lemma: if a negation-free propositional formula is satisfied by a valuation, it is also satisfied by all dominating valuations

23 / 23