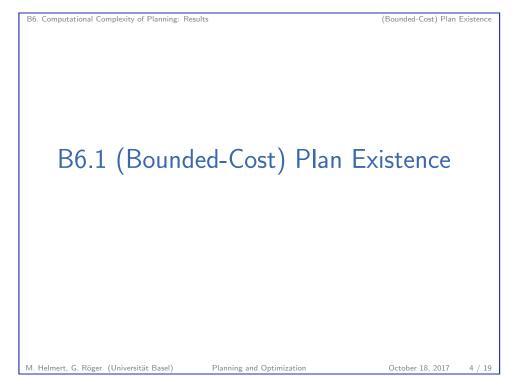


Planning and Optimization October 18, 2017 — B6. Computational Complexity of Planning: R	esults	
B6.1 (Bounded-Cost) Plan Existence		
B6.2 PSPACE-Completeness of Planning		
B6.3 More Complexity Results		
B6.4 Summary		
M. Helmert, G. Röger (Universität Basel) Planning and Optimization	October 18, 2017	2 / 19



(Bounded-Cost) Plan Existence

The Propositional Planning Problem

Definition (Plan Existence)

The plan existence problem (PLANEX)is the following decision problem:GIVEN:propositional planning task ΠQUESTION:Is there a plan for Π?

 \rightsquigarrow decision problem analogue of satisficing planning

Definition (Bounded-Cost Plan Existence)

The bounded-cost plan existence problem (BCPLANEX) is the following decision problem:

GIVEN:propositional planning task Π , cost bound $K \in \mathbb{N}_0$ QUESTION:Is there a plan for Π with cost at most K?

Planning and Optimization

 \rightsquigarrow decision problem analogue of optimal planning

M. Helmert, G. Röger (Universität Basel)

October 18, 2017 5 / 19

B6. Computational Complexity of Planning: Results

PSPACE-Completeness of Planning

B6.2 PSPACE-Completeness of Planning

(Bounded-Cost) Plan Existence

Plan Existence vs. Bounded-Cost Plan Existence

Theorem (Reduction from PLANEX to BCPLANEX) PLANEX \leq_p BCPLANEX

Proof.

Consider a propositional planning task Π with *n* state variables. Let c_{\max} be the maximal cost of all actions of Π .

 Π is solvable iff there is solution with cost at most $c_{\max} \cdot (2^n - 1)$ because a solution need not visit any state twice.

Planning and Optimization

→ map instance Π of PLANEX to instance $\langle \Pi, c_{max} \cdot (2^n - 1) \rangle$ of BCPLANEX

 \rightsquigarrow polynomial reduction

M. Helmert, G. Röger (Universität Basel)

October 18, 2017 6 / 19

B6. Computational Complexity of Planning: Results

PSPACE-Completeness of Planning

Membership in PSPACE

Theorem

 $\mathrm{BCPLANEx} \in \mathsf{PSPACE}$

Proof.

Show BCPLANEX \in NPSPACE and use Savitch's theorem. Nondeterministic algorithm: def plan($\langle V, I, O, \gamma \rangle$, K):

Planning and Optimization

s := I k := K loop forever: $if \ s \models \gamma: \text{ accept}$ $guess \ o \in O$ $if \ s \not\models pre(o): \text{ fail}$ $if \ cost(o) > k: \text{ fail}$ s := s[[o]] k := k - cost(o)

B6. Computational Complexity of Planning: Results

Idea: generic reduction

M accepts w in space p(|w|).

PSPACE-Completeness of Planning

PSPACE-Hardness

Reduction: State Variables

B6. Computational Complexity of Planning: Results

Let $M = \langle \Sigma, \Box, Q, q_0, q_Y, \delta \rangle$ be the fixed DTM, and let p be its space-bound polynomial.

Given input $w_1 \dots w_n$, define relevant tape positions $X := \{1, \dots, p(n)\}.$

State Variables

M. Helmert, G. Röger (Universität Basel)

B6. Computational Complexity of Planning: Results

Reduction: Operators

 $X := \{1, \ldots, p(n)\}.$

and each cell position $i \in X$:

Operators

- ▶ state_q for all $q \in Q$
- head_i for all $i \in X \cup \{0, p(n) + 1\}$
- ► content_{*i*,*a*} for all $i \in X$, $a \in \Sigma_{\Box}$

 \rightsquigarrow allows encoding a Turing machine configuration

Let $M = \langle \Sigma, \Box, Q, q_0, q_Y, \delta \rangle$ be the fixed DTM, and let p be its space-bound polynomial.

• precondition: state_q \land head_i \land content_{i,a}

• effect: \neg state_{*a*} $\land \neg$ head_{*i*} $\land \neg$ content_{*i*,*a*}

Given input $w_1 \ldots w_n$, define relevant tape positions

One operator for each transition rule $\delta(q, a) = \langle q', a', \Delta \rangle$

 \wedge state_{*a*} \wedge head_{*i*+ Δ} \wedge content_{*i*,*a*}

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

B6. Computational Complexity of Planning: Results

PSPACE-Completeness of Planning

October 18, 2017

9 / 19

Let $M = \langle \Sigma, \Box, Q, q_0, q_Y, \delta \rangle$ be the fixed DTM, and let p be its space-bound polynomial.

Given input $w_1 \dots w_n$, define relevant tape positions $X := \{1, \dots, p(n)\}.$

For an arbitrary fixed DTM M with space bound polynomial p

and input w, generate planning task which is solvable iff

▶ For simplicity, restrict to TMs which never move to the left

Planning and Optimization

Planning and Optimization

of the initial head position (no loss of generality).

Initial State

Initially true:

- ► state_{q0}
- head₁
- content_{*i*,*w_i* for all $i \in \{1, \ldots, n\}$}

• content<sub>*i*,
$$\Box$$</sub> for all $i \in X \setminus \{1, \ldots, n\}$

Initially false:

all others

PSPACE-Completeness of Planning

October 18, 2017

10 / 19

B6. Computational Complexity of Planning: Results

PSPACE-Completeness of Planning

Reduction: Goal

Let $M = \langle \Sigma, \Box, Q, q_0, q_Y, \delta \rangle$ be the fixed DTM, and let p be its space-bound polynomial.

Given input $w_1 \dots w_n$, define relevant tape positions $X := \{1, \dots, p(n)\}.$

Goal state_{qy}

M. Helmert, G. Röger (Universität Basel)

October 18, 2017

B6. Computational Complexity of Planning: Results

More Complexity Results

13 / 19

B6.3 More Complexity Results

Planning and Optimization

PSPACE-Completeness of Planning

PSPACE-Completeness of STRIPS Plan Existence

Theorem (PSPACE-Completeness; Bylander, 1994) PLANEX and BCPLANEX are PSPACE-complete. This is true even if only STRIPS tasks are allowed.

Proof.

Membership for $\operatorname{BCPLANEx}$ was already shown.

Hardness for $\rm PLANEx$ follows because we just presented a polynomial reduction from an arbitrary problem in PSPACE to $\rm PLANEx.$ (Note that the reduction only generates STRIPS tasks.)

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

October 18, 2017

B6. Computational Complexity of Planning: Results

More Complexity Results

14 / 19

More Complexity Results

In addition to the basic complexity result presented in this chapter, there are many special cases, generalizations, variations and related problems studied in the literature:

- different planning formalisms
 - e.g., finite-domain representation, nondeterministic effects, partial observability, schematic operators, numerical state variables
- syntactic restrictions of planning tasks
 - e.g., without preconditions, without conjunctive effects, STRIPS without delete effects
- semantic restrictions of planning task
 - e.g., restricting variable dependencies ("causal graphs")

Planning and Optimization

- particular planning domains
 - e.g., Blocksworld, Logistics, FreeCell

Complexity Results for Different Planning Formalisms

Some results for different planning formalisms:

- FDR tasks:
 - same complexity as for propositional tasks ("folklore")
 - ► also true for the SAS⁺ and TNF special cases
- nondeterministic effects:
 - ▶ fully observable: EXP-complete (Littman, 1997)
 - ▶ unobservable: EXPSPACE-complete (Haslum & Jonsson, 1999)
 - ▶ partially observable: 2-EXP-complete (Rintanen, 2004)

Planning and Optimization

- schematic operators:
 - ► usually adds one exponential level to PLANEX complexity
 - e.g., classical case EXPSPACE-complete (Erol et al., 1995)
- numerical state variables:
 - undecidable in most variations (Helmert, 2002)

M. Helmert, G. Röger (Universität Basel)

October 18, 2017 17 / 19

B6. Computational Complexity of Planning: Results

Summary

Summary

- Propositional planning is PSPACE-complete.
- This is true both for satisficing and optimal planning.
- The hardness proof is a polynomial reduction that translates an arbitrary polynomial-space DTM into a STRIPS task:
 - DTM configurations are encoded by state variables.
 - Operators simulate transitions between DTM configurations.
 - ▶ The DTM accepts an input iff there is a plan for the corresponding STRIPS task.
- This implies that there is no polynomial algorithm for classical planning unless P = PSPACE.
- It also means that planning is not polynomially reducible to any problem in NP unless NP = PSPACE.

B6. Computational Complexity of Planning: Re	sults		Summary
B6.4 Summa			
DO.4 Summa	ii y		
M. Helmert, G. Röger (Universität Basel)	Planning and Optimization	October 18, 2017	18 / 19
M. Heinert, G. Roger (Oniversitat Dasel)	Frammig and Optimization	October 10, 2017	10 / 13