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The Propositional Planning Problem

Definition (Plan Existence)

The plan existence problem (PlanEx)
is the following decision problem:

Given: propositional planning task Π
Question: Is there a plan for Π?

 decision problem analogue of satisficing planning

Definition (Bounded-Cost Plan Existence)

The bounded-cost plan existence problem (BCPlanEx)
is the following decision problem:

Given: propositional planning task Π, cost bound K ∈ N0

Question: Is there a plan for Π with cost at most K?

 decision problem analogue of optimal planning
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Plan Existence vs. Bounded-Cost Plan Existence

Theorem (Reduction from PlanEx to BCPlanEx)

PlanEx ≤p BCPlanEx

Proof.
Consider a propositional planning task Π with n state variables.
Let cmax be the maximal cost of all actions of Π.

Π is solvable iff there is solution with cost at most cmax · (2n − 1)
because a solution need not visit any state twice.

 map instance Π of PlanEx to instance 〈Π, cmax · (2n − 1)〉

 

of BCPlanEx

 polynomial reduction
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B6.2 PSPACE-Completeness of
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Membership in PSPACE

Theorem
BCPlanEx ∈ PSPACE

Proof.
Show BCPlanEx ∈ NPSPACE and use Savitch’s theorem.
Nondeterministic algorithm:

def plan(〈V , I ,O, γ〉, K ):
s := I
k := K
loop forever:

if s |= γ: accept
guess o ∈ O
if s 6|= pre(o): fail
if cost(o) > k: fail
s := sJoK
k := k − cost(o)
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PSPACE-Hardness

Idea: generic reduction

I For an arbitrary fixed DTM M with space bound polynomial p
and input w , generate planning task which is solvable iff
M accepts w in space p(|w |).

I For simplicity, restrict to TMs which never move to the left
of the initial head position (no loss of generality).
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Reduction: State Variables

Let M = 〈Σ,�,Q, q0, qY, δ〉 be the fixed DTM,
and let p be its space-bound polynomial.

Given input w1 . . .wn, define relevant tape positions
X := {1, . . . , p(n)}.

State Variables
I stateq for all q ∈ Q

I headi for all i ∈ X ∪ {0, p(n) + 1}
I contenti ,a for all i ∈ X , a ∈ Σ�

 allows encoding a Turing machine configuration
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Reduction: Initial State

Let M = 〈Σ,�,Q, q0, qY, δ〉 be the fixed DTM,
and let p be its space-bound polynomial.

Given input w1 . . .wn, define relevant tape positions
X := {1, . . . , p(n)}.

Initial State
Initially true:

I stateq0

I head1

I contenti ,wi
for all i ∈ {1, . . . , n}

I contenti ,� for all i ∈ X \ {1, . . . , n}
Initially false:

I all others
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Reduction: Operators

Let M = 〈Σ,�,Q, q0, qY, δ〉 be the fixed DTM,
and let p be its space-bound polynomial.

Given input w1 . . .wn, define relevant tape positions
X := {1, . . . , p(n)}.

Operators

One operator for each transition rule δ(q, a) = 〈q′, a′,∆〉
and each cell position i ∈ X :

I precondition: stateq ∧ headi ∧ contenti ,a
I effect: ¬stateq ∧ ¬headi ∧ ¬contenti ,a

∧ stateq′ ∧ headi+∆ ∧ contenti ,a′
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Reduction: Goal

Let M = 〈Σ,�,Q, q0, qY, δ〉 be the fixed DTM,
and let p be its space-bound polynomial.

Given input w1 . . .wn, define relevant tape positions
X := {1, . . . , p(n)}.

Goal
stateqY
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PSPACE-Completeness of STRIPS Plan Existence

Theorem (PSPACE-Completeness; Bylander, 1994)

PlanEx and BCPlanEx are PSPACE-complete.
This is true even if only STRIPS tasks are allowed.

Proof.
Membership for BCPlanEx was already shown.

Hardness for PlanEx follows because we just presented a
polynomial reduction from an arbitrary problem in PSPACE to
PlanEx. (Note that the reduction only generates STRIPS tasks.)

Membership for PlanEx and hardness for BCPlanEx follow
from the polynomial reduction from PlanEx to BCPlanEx.
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B6.3 More Complexity Results

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2017 15 / 19

B6. Computational Complexity of Planning: Results More Complexity Results

More Complexity Results

In addition to the basic complexity result presented in this chapter,
there are many special cases, generalizations, variations and related
problems studied in the literature:

I different planning formalisms
I e.g., finite-domain representation, nondeterministic effects,

partial observability, schematic operators, numerical state
variables

I syntactic restrictions of planning tasks
I e.g., without preconditions, without conjunctive effects,

STRIPS without delete effects

I semantic restrictions of planning task
I e.g., restricting variable dependencies (“causal graphs”)

I particular planning domains
I e.g., Blocksworld, Logistics, FreeCell
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Complexity Results for Different Planning Formalisms

Some results for different planning formalisms:
I FDR tasks:

I same complexity as for propositional tasks (“folklore”)
I also true for the SAS+ and TNF special cases

I nondeterministic effects:
I fully observable: EXP-complete (Littman, 1997)
I unobservable: EXPSPACE-complete (Haslum & Jonsson,

1999)
I partially observable: 2-EXP-complete (Rintanen, 2004)

I schematic operators:
I usually adds one exponential level to PlanEx complexity
I e.g., classical case EXPSPACE-complete (Erol et al., 1995)

I numerical state variables:
I undecidable in most variations (Helmert, 2002)
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Summary

I Propositional planning is PSPACE-complete.

I This is true both for satisficing and optimal planning.
I The hardness proof is a polynomial reduction that translates

an arbitrary polynomial-space DTM into a STRIPS task:
I DTM configurations are encoded by state variables.
I Operators simulate transitions between DTM configurations.
I The DTM accepts an input iff there is a plan

for the corresponding STRIPS task.

I This implies that there is no polynomial algorithm
for classical planning unless P = PSPACE.

I It also means that planning is not polynomially reducible
to any problem in NP unless NP = PSPACE.
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