
Planning and Optimization
B5. Computational Complexity of Planning: Background

Malte Helmert and Gabriele Röger

Universität Basel

October 18, 2017

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2017 1 / 20

Planning and Optimization
October 18, 2017 — B5. Computational Complexity of Planning: Background

B5.1 Motivation

B5.2 Background: Turing Machines

B5.3 Background: Complexity Classes

B5.4 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2017 2 / 20

Content of this Course

Planning

Tasks

Progression/
Regression

Complexity

Heuristics

Types

Combination

ComparisonSymbolic Search

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2017 3 / 20

B5. Computational Complexity of Planning: Background Motivation

B5.1 Motivation

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2017 4 / 20

B5. Computational Complexity of Planning: Background Motivation

How Difficult is Planning?

I Using progression and a state-space search algorithm like
breadth-first search, planning can be solved in polynomial time
in the size of the transition system (i.e., the number of states).

I However, the number of states is exponential in the number
of state variables, and hence in general exponential
in the size of the input to the planning algorithm.

 Do non-exponential planning algorithms exist?

 What is the precise computational complexity of planning?

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2017 5 / 20

B5. Computational Complexity of Planning: Background Motivation

Why Computational Complexity?

I understand the problem

I know what is not possible

I find interesting subproblems that are easier to solve
I distinguish essential features from syntactic sugar

I Is STRIPS planning easier than general planning?
I Is planning for FDR tasks harder than for propositional tasks?

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2017 6 / 20

B5. Computational Complexity of Planning: Background Background: Turing Machines

B5.2 Background: Turing Machines

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2017 7 / 20

B5. Computational Complexity of Planning: Background Background: Turing Machines

Reminder: Complexity Theory

Need to Catch Up?
I This and the following section are mostly reminders.
I We assume knowledge of complexity theory:

I languages and decision problems
I Turing machines: NTMs and DTMs;

polynomial equivalence with other models of computation
I complexity classes: P and NP
I polynomial reductions

I If you are not familiar with these topics, we recommend
Parts C and E of the Theorie der Informatik course at http:
//cs.unibas.ch/fs2017/theorie-der-informatik/.

I The slides are in English, even though the course is not.

Note: the space complexity classes (DSPACE, NSPACE, PSPACE,
NPSPACE) go beyond the content of the prerequisite course.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2017 8 / 20

http://cs.unibas.ch/fs2017/theorie-der-informatik/
http://cs.unibas.ch/fs2017/theorie-der-informatik/

B5. Computational Complexity of Planning: Background Background: Turing Machines

Nondeterministic Turing Machines

Definition (Nondeterministic Turing Machine)

A nondeterministic Turing machine (NTM) is a 6-tuple
〈Σ,�,Q, q0, qY, δ〉 with the following components:
I input alphabet Σ and blank symbol � /∈ Σ

I alphabets always nonempty and finite
I tape alphabet Σ� = Σ ∪ {�}

I finite set Q of internal states with initial state q0 ∈ Q
and accepting state qY ∈ Q
I nonterminal states Q ′ := Q \ {qY}

I transition relation δ ⊆ (Q ′ × Σ�)× (Q × Σ� × {−1,+1})

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2017 9 / 20

B5. Computational Complexity of Planning: Background Background: Turing Machines

Deterministic Turing Machines

Definition (Deterministic Turing Machine)

A deterministic Turing machine (DTM) is an NTM where
the transition relation is functional, i.e., for all 〈q, a〉 ∈ Q ′ × Σ�,
there is exactly one triple 〈q′, a′,∆〉 with 〈〈q, a〉, 〈q′, a′,∆〉〉 ∈ δ.

Notation: We write δ(q, a) for the unique triple 〈q′, a′,∆〉 such
that 〈〈q, a〉, 〈q′, a′,∆〉〉 ∈ δ.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2017 10 / 20

B5. Computational Complexity of Planning: Background Background: Turing Machines

Turing Machine Configurations

Definition (Configuration)

Let M = 〈Σ,�,Q, q0, qY, δ〉 be an NTM.

A configuration of M is a triple 〈w , q, x〉 ∈ Σ∗� × Q × Σ+
�.

I w : tape contents to the left of tape head

I q: current state

I x : tape contents at tape head and to its right

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2017 11 / 20

B5. Computational Complexity of Planning: Background Background: Turing Machines

Turing Machine Transitions

Definition (Yields)

Let M = 〈Σ,�,Q, q0, qY, δ〉 be an NTM.

A configuration c of M yields a configuration c ′ of M,
in symbols c ` c ′, as defined by the following rules,
where a, a′, b ∈ Σ�, w , x ∈ Σ∗�, q, q′ ∈ Q and
〈〈q, a〉, 〈q′, a′,∆〉〉 ∈ δ:

〈w , q, ax〉 ` 〈wa′, q′, x〉 if ∆ = +1, |x | ≥ 1

〈w , q, a〉 ` 〈wa′, q′,�〉 if ∆ = +1

〈wb, q, ax〉 ` 〈w , q′, ba′x〉 if ∆ = −1

〈ε, q, ax〉 ` 〈ε, q′,�a′x〉 if ∆ = −1

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2017 12 / 20

B5. Computational Complexity of Planning: Background Background: Turing Machines

Accepting Configurations

Definition (Accepting Configuration: Time)

Let M = 〈Σ,�,Q, q0, qY, δ〉 be an NTM,
let c = 〈w , q, x〉 be a configuration of M, and let n ∈ N0.

I If q = qY, M accepts c in time n.

I If q 6= qY and M accepts some c ′ with c ` c ′ in time n,
then M accepts c in time n + 1.

Definition (Accepting Configuration: Space)

Let M = 〈Σ,�,Q, q0, qY, δ〉 be an NTM,
let c = 〈w , q, x〉 be a configuration of M, and let n ∈ N0.

I If q = qY and |w |+ |x | ≤ n, M accepts c in space n.

I If q 6= qY and M accepts some c ′ with c ` c ′ in space n,
then M accepts c in space n.

Note: “in time/space n” means at most n, not exactly n

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2017 13 / 20

B5. Computational Complexity of Planning: Background Background: Turing Machines

Accepting Words and Languages

Definition (Accepting Words)

Let M = 〈Σ,�,Q, q0, qY, δ〉 be an NTM.

M accepts the word w ∈ Σ∗ in time (space) n ∈ N0

iff M accepts 〈ε, q0,w〉 in time (space) n.

I Special case: M accepts ε in time (space) n ∈ N0

iff M accepts 〈ε, q0,�〉 in time (space) n.

Definition (Accepting Languages)

Let M = 〈Σ,�,Q, q0, qY, δ〉 be an NTM, and let f : N0 → N0.

M accepts the language L ⊆ Σ∗ in time (space) f
iff M accepts each word w ∈ L in time (space) f (|w |),
and M does not accept any word w /∈ L (in any time/space).

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2017 14 / 20

B5. Computational Complexity of Planning: Background Background: Complexity Classes

B5.3 Background: Complexity
Classes

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2017 15 / 20

B5. Computational Complexity of Planning: Background Background: Complexity Classes

Time and Space Complexity Classes

Definition (DTIME, NTIME, DSPACE, NSPACE)

Let f : N0 → N0.

Complexity class DTIME(f) contains all languages
accepted in time f by some DTM.

Complexity class NTIME(f) contains all languages
accepted in time f by some NTM.

Complexity class DSPACE(f) contains all languages
accepted in space f by some DTM.

Complexity class NSPACE(f) contains all languages
accepted in space f by some NTM.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2017 16 / 20

B5. Computational Complexity of Planning: Background Background: Complexity Classes

Polynomial Time and Space Classes

Let P be the set of polynomials p : N0 → N0

whose coefficients are natural numbers.

Definition (P, NP, PSPACE, NPSPACE)

P =
⋃

p∈P DTIME(p)

NP =
⋃

p∈P NTIME(p)

PSPACE =
⋃

p∈P DSPACE(p)

NPSPACE =
⋃

p∈P NSPACE(p)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2017 17 / 20

B5. Computational Complexity of Planning: Background Background: Complexity Classes

Polynomial Complexity Class Relationships

Theorem (Complexity Class Hierarchy)

P ⊆ NP ⊆ PSPACE = NPSPACE

Proof.
P ⊆ NP and PSPACE ⊆ NPSPACE are obvious because
deterministic Turing machines are a special case of
nondeterministic ones.

NP ⊆ NPSPACE holds because a Turing machine can only visit
polynomially many tape cells within polynomial time.

PSPACE = NPSPACE is a special case of a classical result known
as Savitch’s theorem (Savitch 1970).

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2017 18 / 20

B5. Computational Complexity of Planning: Background Summary

B5.4 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2017 19 / 20

B5. Computational Complexity of Planning: Background Summary

Summary

I We recalled the definitions of the most important
complexity classes from complexity theory:
I P: decision problems solvable in polynomial time
I NP: decision problems solvable in polynomial time

by non-deterministic algorithms
I PSPACE: decision problems solvable in polynomial space
I NPSPACE: decision problems solvable in polynomial space

by non-deterministic algorithms

I These classes are related by P ⊆ NP ⊆ PSPACE = NPSPACE.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2017 20 / 20

	Motivation
	Background: Turing Machines
	Background: Complexity Classes
	Summary

