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How Difficult is Planning?

» Using progression and a state-space search algorithm like
breadth-first search, planning can be solved in polynomial time
in the size of the transition system (i.e., the number of states).

» However, the number of states is exponential in the number
of state variables, and hence in general exponential
in the size of the input to the planning algorithm.

§

Do non-exponential planning algorithms exist?

~> What is the precise computational complexity of planning?
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Why Computational Complexity?

» understand the problem
» know what is not possible
> find interesting subproblems that are easier to solve
» distinguish essential features from syntactic sugar
» Is STRIPS planning easier than general planning?
» Is planning for FDR tasks harder than for propositional tasks?
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B5.2 Background: Turing Machines
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Reminder: Complexity Theory

Need to Catch Up?
» This and the following section are mostly reminders.
> We assume knowledge of complexity theory:

» languages and decision problems

» Turing machines: NTMs and DTMs;

polynomial equivalence with other models of computation
complexity classes: P and NP

polynomial reductions

v

v

> If you are not familiar with these topics, we recommend
Parts C and E of the Theorie der Informatik course at http:
//cs.unibas.ch/fs2017/theorie-der-informatik/.

» The slides are in English, even though the course is not.

Note: the space complexity classes (DSPACE, NSPACE, PSPACE,
NPSPACE) go beyond the content of the prerequisite course.
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Nondeterministic Turing Machines

Definition (Nondeterministic Turing Machine)
A nondeterministic Turing machine (NTM) is a 6-tuple
(X,0, Q, g0, gy, 0) with the following components:
» input alphabet ¥ and blank symbol O ¢ ¥
> alphabets always nonempty and finite
» tape alphabet Yo =X U {O}
> finite set Q of internal states with initial state gp € Q@
and accepting state gy € Q
» nonterminal states Q" := Q \ {gv}

» transition relation § C (Q' X ) x (Q x o x {—1,+1})
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Deterministic Turing Machines

Definition (Deterministic Turing Machine)

A deterministic Turing machine (DTM) is an NTM where

the transition relation is functional, i.e., for all (g,a) € Q" x I,
there is exactly one triple (¢’,a’, A) with ((q, a), (¢, a’, A)) € 6.

Notation: We write d(gq, a) for the unique triple (¢, a’, A) such
that ((q,a),(q’,d’,A)) € 0.
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Turing Machine Configurations

Definition (Configuration)

Let M = (X,0, Q, qo, gy, ) be an NTM.

A configuration of M is a triple (w,q,x) € X} x Q x ZE.
> w: tape contents to the left of tape head
> @: current state
> x: tape contents at tape head and to its right
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Turing Machine Transitions

Definition (Yields)
Let M = (X,00,Q, qo, gy, ) be an NTM.
A configuration ¢ of M yields a configuration ¢’ of M,
in symbols ¢ I ¢, as defined by the following rules,
where a,a’, b€ X, w,x € X5, q,4 € Q and
((g,a).(¢",d",8)) € ¢

) if A=+1,|x|>1
(w,q,a) F{wa',q',00) if A =+1

) ifA=-1

)| ifA=-1
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Accepting Configurations

Definition (Accepting Configuration: Time)
Let M = (X,0, Q, qo, qv, d) be an NTM,
let ¢ = (w, q,x) be a configuration of M, and let n € Np.

» If g = gy, M accepts c in time n.

» If g # gqv and M accepts some ¢’ with ¢ - ¢’ in time n,
then M accepts ¢ in time n+ 1.

Definition (Accepting Configuration: Space)
Let M = (X,00, Q, qo, gy, 8) be an NTM,
let ¢ = (w, g,x) be a configuration of M, and let n € Np.

» If g =gv and |w|+ |x| < n, M accepts c in space n.
» If g # gy and M accepts some ¢’ with ¢ - ¢’ in space n,
then M accepts c in space n.

Note: “in time/space n" means at most n, not exactly n
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Accepting Words and Languages

Definition (Accepting Words)
Let M = (X,0, Q, qo, gy, ) be an NTM.
M accepts the word w € £* in time (space) n € Ny
iff M accepts (g, go, w) in time (space) n.
» Special case: M accepts ¢ in time (space) n € Ny
iff M accepts (g, go, ) in time (space) n.

Definition (Accepting Languages)

Let M =(X,00,Q, qo, gy, d) be an NTM, and let f : Ny — Np.
M accepts the language L C ¥* in time (space) f

iff M accepts each word w € L in time (space) f(|w|),

and M does not accept any word w ¢ L (in any time/space).
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B5.3 Background: Complexity
Classes
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Time and Space Complexity Classes

Definition (DTIME, NTIME, DSPACE, NSPACE)
Let f : Ng — Np.

Complexity class DTIME(f) contains all languages
accepted in time f by some DTM.

Complexity class NTIME(f) contains all languages
accepted in time f by some NTM.

Complexity class DSPACE(f) contains all languages
accepted in space f by some DTM.

Complexity class NSPACE(f) contains all languages
accepted in space f by some NTM.
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Polynomial Time and Space Classes

Let P be the set of polynomials p : Ny — Ny
whose coefficients are natural numbers.

Definition (P, NP, PSPACE, NPSPACE)

P = Upep DTIME(p)

NP = U,cp NTIME(p)
PSPACE = J,,.p DSPACE(p)
NPSPACE = J ., NSPACE(p)
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Polynomial Complexity Class Relationships

Theorem (Complexity Class Hierarchy)
P C NP C PSPACE = NPSPACE

Proof.

P C NP and PSPACE C NPSPACE are obvious because
deterministic Turing machines are a special case of
nondeterministic ones.

NP C NPSPACE holds because a Turing machine can only visit
polynomially many tape cells within polynomial time.

PSPACE = NPSPACE is a special case of a classical result known
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B5.4 Summary
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Summary

» We recalled the definitions of the most important
complexity classes from complexity theory:

» P: decision problems solvable in polynomial time

» NP: decision problems solvable in polynomial time
by non-deterministic algorithms

» PSPACE: decision problems solvable in polynomial space

» NPSPACE: decision problems solvable in polynomial space
by non-deterministic algorithms

» These classes are related by P € NP C PSPACE = NPSPACE.
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