

Planning and Optimization October 18, 2017 — B5. Computational Complexity of Planning: Background	
B5.1 Motivation	
B5.2 Background: Turir	ig Machines
B5.3 Background: Complexity Classes	
B5.4 Summary	
M. Helmert, G. Röger (Universität Basel) Planning	; and Optimization October 18, 2017 2 / 20

Background: Turing Machines

Accepting Configurations

Definition (Accepting Configuration: Time)

Let $M = \langle \Sigma, \Box, Q, q_0, q_Y, \delta \rangle$ be an NTM,

let $c = \langle w, q, x \rangle$ be a configuration of M, and let $n \in \mathbb{N}_0$.

- ▶ If $q = q_Y$, *M* accepts *c* in time *n*.
- ▶ If $q \neq q_Y$ and *M* accepts some c' with $c \vdash c'$ in time *n*, then *M* accepts *c* in time n + 1.

Definition (Accepting Configuration: Space)

Let $M = \langle \Sigma, \Box, Q, q_0, q_Y, \delta \rangle$ be an NTM, let $c = \langle w, q, x \rangle$ be a configuration of M, and let $n \in \mathbb{N}_0$.

- If $q = q_Y$ and |w| + |x| < n, M accepts c in space n.
- If $q \neq q_Y$ and M accepts some c' with $c \vdash c'$ in space n, then M accepts c in space n.

Planning and Optimization

Note: "in time/space n" means at most n, not exactly n

```
M. Helmert, G. Röger (Universität Basel)
```

October 18, 2017 13 / 20

B5. Computational Complexity of Planning: Background

Background: Complexity Classes

B5.3 Background: Complexity Classes

Accepting Words and Languages

Definition (Accepting Words)

Let $M = \langle \Sigma, \Box, Q, q_0, q_Y, \delta \rangle$ be an NTM.

M accepts the word $w \in \Sigma^*$ in time (space) $n \in \mathbb{N}_0$

iff *M* accepts $\langle \varepsilon, q_0, w \rangle$ in time (space) *n*.

▶ Special case: *M* accepts ε in time (space) $n \in \mathbb{N}_0$ iff *M* accepts $\langle \varepsilon, q_0, \Box \rangle$ in time (space) *n*.

Definition (Accepting Languages) Let $M = \langle \Sigma, \Box, Q, q_0, q_Y, \delta \rangle$ be an NTM, and let $f : \mathbb{N}_0 \to \mathbb{N}_0$. *M* accepts the language $L \subseteq \Sigma^*$ in time (space) *f* iff M accepts each word $w \in L$ in time (space) f(|w|), and *M* does not accept any word $w \notin L$ (in any time/space).

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

October 18, 2017 14 / 20

B5. Computational Complexity of Planning: Background

Background: Complexity Classes

Time and Space Complexity Classes

Definition (DTIME, NTIME, DSPACE, NSPACE) Let $f : \mathbb{N}_0 \to \mathbb{N}_0$. Complexity class DTIME(f) contains all languages

accepted in time f by some DTM.

Complexity class NTIME(f) contains all languages accepted in time f by some NTM.

Complexity class DSPACE(f) contains all languages accepted in space f by some DTM.

Complexity class NSPACE(f) contains all languages accepted in space f by some NTM.

Background: Complexity Classes

October 18, 2017

17 / 20

Summary

19 / 20

Polynomial Time and Space Classes

Let \mathcal{P} be the set of polynomials $p: \mathbb{N}_0 \to \mathbb{N}_0$ whose coefficients are natural numbers.

Definition (P, NP, PSPACE, NPSPACE)

 $P = \bigcup_{p \in \mathcal{P}} DTIME(p)$ $NP = \bigcup_{p \in \mathcal{P}} NTIME(p)$ $\mathsf{PSPACE} = \bigcup_{p \in \mathcal{P}} \mathsf{DSPACE}(p)$ NPSPACE = $\bigcup_{p \in \mathcal{P}} \text{NSPACE}(p)$

M. Helmert, G. Röger (Universität Basel)

B5. Computational Complexity of Planning: Background

Planning and Optimization

Planning and Optimization

B5.4 Summary

Background: Complexity Classes

Polynomial Complexity Class Relationships

Theorem (Complexity Class Hierarchy) $P \subseteq NP \subseteq PSPACE = NPSPACE$

Proof.

 $P \subset NP$ and $PSPACE \subset NPSPACE$ are obvious because deterministic Turing machines are a special case of nondeterministic ones.

 $NP \subseteq NPSPACE$ holds because a Turing machine can only visit polynomially many tape cells within polynomial time.

PSPACE = NPSPACE is a special case of a classical result known as Savitch's theorem (Savitch 1970).

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

October 18, 2017 18 / 20

