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Regressing Formulas Through Operators: Idea

I We can now regress arbitrary formulas
through arbitrary effects.

I The last missing piece is a definition of regression through
operators, describing exactly in which states s applying a
given operator o leads to a state satisfying a given formula ϕ.

I There are two requirements:
I The operator o must be applicable in the state s.
I The resulting state sJoK must satisfy ϕ.
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Regressing Formulas Through Operators: Definition

Definition (Regressing a Formula Through an Operator)

In a propositional planning task, let o be an operator,
and let ϕ be a formula over state variables.

The regression of ϕ through o, written regr(ϕ, o),
is defined as the following logical formula:

regr(ϕ, o) = pre(o) ∧ regr(ϕ, eff(o)).
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Regressing Formulas Through Operators: Correctness (1)

Theorem (Correctness of regr(ϕ, o))

Let ϕ be a logical formula, o an operator and s a state.

Then s |= regr(ϕ, o) iff o is applicable in s and sJoK |= ϕ.
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Regressing Formulas Through Operators: Correctness (2)

Reminder: regr(ϕ, o) = pre(o) ∧ regr(ϕ, eff(o))

Proof.

Case 1: s |= pre(o).

Then o is applicable in s and the statement we must prove
simplifies to: s |= regr(ϕ, eff(o)) iff sJoK |= ϕ.
This was proved in the previous lemma.

Case 2: s 6|= pre(o).

Then s 6|= regr(ϕ, o) and o is not applicable in s.
Hence both statements are false and therefore equivalent.
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Regression Examples (1)

Examples: compute regression and simplify to DNF

I regr(b, 〈a, b〉)
≡ a ∧ (> ∨ (b ∧ ¬⊥))
≡ a

I regr(b ∧ c ∧ d , 〈a, b〉)
≡ a ∧ (> ∨ (b ∧ ¬⊥)) ∧ (⊥ ∨ (c ∧ ¬⊥)) ∧ (⊥ ∨ (d ∧ ¬⊥))
≡ a ∧ c ∧ d

I regr(b ∧ ¬c, 〈a, b ∧ c〉)
≡ a ∧ (> ∨ (b ∧ ¬⊥)) ∧ ¬(> ∨ (c ∧ ¬⊥))
≡ a ∧ > ∧ ⊥
≡ ⊥
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Regression Examples (2)

Examples: compute regression and simplify to DNF

I regr(b, 〈a, c B b〉)
≡ a ∧ (c ∨ (b ∧ ¬⊥))
≡ a ∧ (c ∨ b)
≡ (a ∧ c) ∨ (a ∧ b)

I regr(b, 〈a, (c B b) ∧ ((d ∧ ¬c) B ¬b)〉)
≡ a ∧ (c ∨ (b ∧ ¬(d ∧ ¬c)))
≡ a ∧ (c ∨ (b ∧ (¬d ∨ c)))
≡ a ∧ (c ∨ (b ∧ ¬d) ∨ (b ∧ c))
≡ a ∧ (c ∨ (b ∧ ¬d))
≡ (a ∧ c) ∨ (a ∧ b ∧ ¬d)
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B4.2 Practical Issues
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Emptiness and Subsumption Testing

The following two tests are useful when performing regression
searches to avoid exploring unpromising branches:

I Test that regr(ϕ, o) does not represent the empty set
(which would mean that search is in a dead end).
For example, regr(p, 〈a,¬p〉) ≡ a ∧ (⊥ ∨ (p ∧ ¬>)) ≡ ⊥.

I Test that regr(ϕ, o) does not represent a subset of ϕ
(which would mean that the resulting search state
is worse than ϕ and can be pruned).
For example, regr(a, 〈b, c〉) ≡ a ∧ b.

Both of these problems are NP-complete.
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Formula Growth

The formula regr(regr(. . . regr(ϕ, on) . . . , o2), o1) may have size
O(|ϕ||o1||o2| . . . |on−1||on|), i.e., the product of the sizes
of ϕ and the operators.
 worst-case exponential size Ω(|ϕ|n)

Logical Simplifications
I ⊥ ∧ ϕ ≡ ⊥, > ∧ ϕ ≡ ϕ, ⊥ ∨ ϕ ≡ ϕ, > ∨ ϕ ≡ >
I a ∨ ϕ ≡ a ∨ ϕ[⊥/a], ¬a ∨ ϕ ≡ ¬a ∨ ϕ[>/a],

a ∧ ϕ ≡ a ∧ ϕ[>/a], ¬a ∧ ϕ ≡ ¬a ∧ ϕ[⊥/a]

I idempotence, absorption, commutativity, associativity, . . .
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Restricting Formula Growth in Search Trees

Problem very big formulas obtained by regression

Cause disjunctivity in the (NNF) formulas
(formulas without disjunctions easily convertible
to monomials `1 ∧ · · · ∧ `n where `i are literals
and n is at most the number of state variables)

Idea split disjunctive formulas when generating search trees
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Unrestricted Regression: Search Tree Example

Unrestricted regression: do not treat disjunctions specially

Goal γ = a ∧ b, initial state I = {a 7→ F, b 7→ F, c 7→ F}.

γ = a ∧ b

¬a ∧ a

(¬c ∨ a) ∧ b

(¬c ∨ a) ∧ ¬a

(¬c ∨ a) ∧ b

〈¬a, b〉

〈b,¬
c B

a〉

〈¬a, b〉

〈b,¬c B a〉
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Full Splitting: Search Tree Example

Full splitting: always split all disjunctive formulas

Goal γ = a ∧ b, initial state I = {a 7→ F, b 7→ F, c 7→ F}.
(¬c ∨ a) ∧ b in DNF: (¬c ∧ b) ∨ (a ∧ b)
 split into ¬c ∧ b and a ∧ b

γ = a ∧ b

¬a ∧ a

¬c ∧ b

(duplicate of γ) a ∧ b

¬c ∧ ¬a

¬c ∧ b

〈¬a, b〉

〈b,¬
c B

a〉

〈b,¬c B a〉

〈¬a, b〉

〈b,¬c B a〉
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General Splitting Strategies

Alternatives:

1 Do nothing (unrestricted regression).

2 Always eliminate all disjunctivity (full splitting).

3 Reduce disjunctivity if formula becomes too big.

Discussion:

I With unrestricted regression formulas may have sizes
that are exponential in the number of state variables.

I With full splitting search tree can be exponentially bigger
than without splitting.

I The third option lies between these two extremes.
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B4.3 Summary
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Summary

I Regressing a formula ϕ through an operator involves
regressing ϕ through the effect and enforcing the precondition.

I When applying regression in practice, additional
considerations come into play, including:

I emptiness testing to prune dead-end search states
I subsumption testing to prune dominated search states
I logical simplifications and splitting to restrict formula growth
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