Planning and Optimization

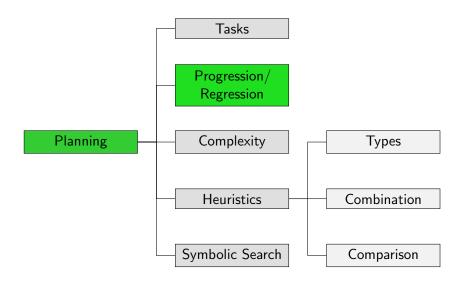
B2. Regression: Introduction & STRIPS Case

Malte Helmert and Gabriele Röger

Universität Basel

October 11, 2017

Content of this Course



Regression •0000

Regression

Regression

Searching planning tasks in forward vs. backward direction is not symmetric:

- forward search starts from a single initial state; backward search starts from a set of goal states
- when applying an operator o in a state s in forward direction, there is a unique successor state s': if we just applied operator o and ended up in state s', there can be several possible predecessor states s
- → in most natural representation for backward search in planning, each search state corresponds to a set of world states

Regression

Planning by Backward Search: Regression

Regression: Computing the possible predecessor states regr(S', o)of a set of states S' ("subgoal") given the last operator othat was applied.

→ formal definition in next chapter

Regression planners find solutions by backward search:

- start from set of goal states
- iteratively pick a previously generated subgoal (state set) and regress it through an operator, generating a new subgoal
- solution found when a generated subgoal includes initial state

pro: can handle many states simultaneously con: basic operations complicated and expensive Regression

Search Space Representation in Regression Planners

identify state sets with logical formulas (again):

- each search state corresponds to a set of world states ("subgoal")
- each search state is represented by a logical formula: φ represents $\{s \in S \mid s \models \varphi\}$
- many basic search operations like detecting duplicates are NP-complete or coNP-complete

Search Space for Regression

Regression

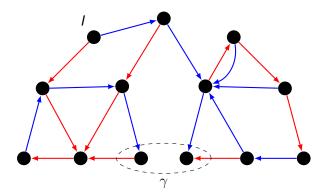
Search Space for Regression

search space for regression in a planning task $\Pi = \langle V, I, O, \gamma \rangle$ (search states are formulas φ describing sets of world states; actions of search space are operators $o \in O$)

- init() \rightsquigarrow returns γ
- is_goal(φ) \rightsquigarrow tests if $I \models \varphi$
- $succ(\varphi)$ \rightsquigarrow returns all pairs $\langle o, regr(\varphi, o) \rangle$ where $o \in O$ and $regr(\varphi, o)$ is defined
- \rightsquigarrow returns cost(o) as defined in Π cost(*o*)
- \rightsquigarrow estimates cost from I to φ (\rightsquigarrow Parts C–F) • $h(\varphi)$

Regression Example

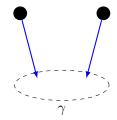
Regression Planning Example (Depth-first Search)



 γ

$$\varphi_1 = regr(\gamma, \longrightarrow)$$

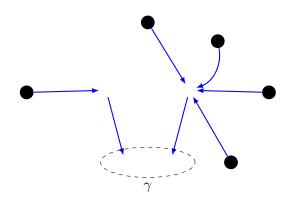
$$\varphi_1 \longrightarrow \gamma$$



$$\varphi_1 = regr(\gamma, \longrightarrow)$$

$$\varphi_2 = regr(\varphi_1, \longrightarrow)$$

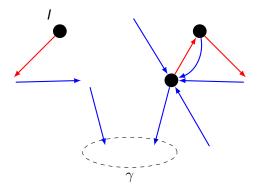
$$\varphi_2 \longrightarrow \varphi_1 \longrightarrow \gamma$$



$$\varphi_{1} = regr(\gamma, \longrightarrow) \qquad \varphi_{3} \longrightarrow \varphi_{2} \longrightarrow \varphi_{1} \longrightarrow \gamma_{2}$$

$$\varphi_{2} = regr(\varphi_{1}, \longrightarrow)$$

$$\varphi_{3} = regr(\varphi_{2}, \longrightarrow), I \models \varphi_{3}$$



Regression for STRIPS Tasks

•000

Regression for STRIPS Planning Tasks

Regression for conflict-free STRIPS planning tasks is much simpler than the general case:

- Consider subgoal φ that is conjunction of atoms $a_1 \wedge \cdots \wedge a_n$ (e.g., the original goal γ of the planning task).
- First step: Choose an operator o that deletes no a_i.
- Second step: Remove any atoms added by o from φ .
- Third step: Conjoin pre(o) to φ .
- \rightarrow Outcome of this is regression of φ w.r.t. o. It is again a conjunction of atoms.

optimization: only consider operators adding at least one ai

Note: "conflict-free" is not a serious restriction for STRIPS tasks

STRIPS Regression

Definition (STRIPS Regression)

Let $\varphi = \varphi_1 \wedge \cdots \wedge \varphi_n$ be a conjunction of atoms, and let o be a conflict-free STRIPS operator which adds the atoms a_1, \ldots, a_k and deletes the atoms d_1, \ldots, d_l . (W.l.o.g., $a_i \neq d_i$ for all i, j.)

The STRIPS regression of φ with respect to o is

$$\mathit{sregr}(\varphi, o) := egin{cases} \bot & \mathsf{if} \ arphi_i = d_j \ \mathsf{for} \ \mathsf{some} \ i, j \ \mathit{pre}(o) \land \bigwedge (\{\varphi_1, \dots, \varphi_n\} \setminus \{a_1, \dots, a_k\}) & \mathsf{else} \end{cases}$$

Note: $sregr(\varphi, o)$ is again a conjunction of atoms, or \bot .

Does this Capture the Idea of Regression?

For our definition to capture the concept of regression, it should satisfy the following property:

Regression Property

For all sets of states described by a conjunction of atoms φ , all states s and all STRIPS operators o,

$$s \models sregr(\varphi, o)$$
 iff $s[o] \models \varphi$.

This is indeed true. We do not prove it now because we prove this property for general regression (not just STRIPS) later.

Summary

Summary

- Regression search proceeds backwards from the goal.
- Each search state corresponds to a set of world states, for example represented by a formula.
- Regression is simple for STRIPS operators.
- The theory for general regression is more complex. This is the topic of the following chapters.