
Planning and Optimization
A8. Finite Domain Representation

Malte Helmert and Gabriele Röger

Universität Basel

October 9, 2017

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 1 / 31

Planning and Optimization
October 9, 2017 — A8. Finite Domain Representation

A8.1 FDR Planning Tasks

A8.2 FDR Task Semantics

A8.3 SAS+ Planning Tasks

A8.4 Transition Normal Form

A8.5 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 2 / 31

Content of this Course

Planning

Tasks

Progression/
Regression

Complexity

Heuristics

Types

Combination

ComparisonSymbolic Search

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 3 / 31

Reminder: Blocks World with Boolean State Variables

Example

s(A-on-B) = F

s(A-on-C) = F

s(A-on-table) = T

s(B-on-A) = T

s(B-on-C) = F

s(B-on-table) = F

s(C-on-A) = F

s(C-on-B) = F

s(C-on-table) = T

 29 = 512 states

A
B

C

Note: it may be useful to add auxiliary state variables like A-clear.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 4 / 31

Blocks World with Finite-Domain State Variables

Use three finite-domain state variables:

I below-a: {b, c, table}
I below-b: {a, c, table}
I below-c: {a, b, table}

Example

s(below-a) = table

s(below-b) = a

s(below-c) = table

 33 = 27 states

A
B

C

Note: it may be useful to add auxiliary state variables like above-a.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 5 / 31

A8. Finite Domain Representation FDR Planning Tasks

A8.1 FDR Planning Tasks

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 6 / 31

A8. Finite Domain Representation FDR Planning Tasks

Finite-Domain State Variables

Definition (Finite-Domain State Variable)

A finite-domain state variable is a symbol v
with an associated finite domain, i.e., a non-empty finite set.

We write dom(v) for the domain of v .

Example (Blocks World)

v = above-a, dom(above-a) = {b, c, nothing}
This state variable encodes the same information as the
propositional variables B-on-A, C-on-A and A-clear.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 7 / 31

A8. Finite Domain Representation FDR Planning Tasks

Finite-Domain States

Definition (Finite-Domain State)

Let V be a finite set of finite-domain state variables.

A state over V is an assignment s : V →
⋃

v∈V dom(v)
such that s(v) ∈ dom(v) for all v ∈ V .

Example (Blocks World)

s = {above-a 7→ nothing, above-b 7→ a, above-c 7→ b,
below-a 7→ b, below-b 7→ c, below-c 7→ table}

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 8 / 31

A8. Finite Domain Representation FDR Planning Tasks

Finite-Domain Formulas

Definition (Finite-Domain Formula)

Logical formulas over finite-domain state variables V
are defined identically to the propositional case,
except that instead of atomic formulas of the form v ′ ∈ V ′

with propositional state variables V ′, there are atomic formulas
of the form v = d , where v ∈ V and d ∈ dom(v).

Example (Blocks World)

The formula (above-a = nothing) ∨ ¬(below-b = c)
corresponds to the formula A-clear ∨ ¬B-on-C.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 9 / 31

A8. Finite Domain Representation FDR Planning Tasks

Finite-Domain Effects

Definition (Finite-Domain Effect)

Effects over finite-domain state variables V
are defined identically to the propositional case,
except that instead of atomic effects of the form v ′ and ¬v ′
with propositional state variables v ′ ∈ V ′, there are atomic effects
of the form v := d , where v ∈ V and d ∈ dom(v).

Example (Blocks World)

The effect
(below-a := table) ∧ ((above-b = a) B (above-b := nothing))
corresponds to the effect
A-on-table∧¬A-on-B∧¬A-on-C∧(A-on-B B (B-clear∧¬A-on-B)).

 finite-domain operators, effect conditions etc. follow

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 10 / 31

A8. Finite Domain Representation FDR Planning Tasks

Planning Tasks in Finite-Domain Representation

Definition (Planning Task in Finite-Domain Representation)

A planning task in finite-domain representation
or FDR planning task is a 4-tuple Π = 〈V , I ,O, γ〉 where

I V is a finite set of finite-domain state variables,

I I is a state over V called the initial state,

I O is a finite set of finite-domain operators over V , and

I γ is a formula over V called the goal.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 11 / 31

A8. Finite Domain Representation FDR Task Semantics

A8.2 FDR Task Semantics

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 12 / 31

A8. Finite Domain Representation FDR Task Semantics

FDR Task Semantics: Introduction

I We have now defined what FDR tasks look like.

I We still have to define their semantics.

I Because they are similar to propositional planning tasks,
we can define their semantics in a very similar way.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 13 / 31

A8. Finite Domain Representation FDR Task Semantics

Direct vs. Compilation Semantics

We describe two ways of defining semantics for FDR tasks:

I directly, mirroring our definitions for propositional tasks

I by compilation to propositional tasks

Comparison of the semantics:

I The two semantics are equivalent in terms of the reachable
state space and hence in terms of the set of solutions.
(We will not prove this.)

I They are not equivalent w.r.t. the set of all states.

Where the distinction matters, we use the direct semantics
in this course unless stated otherwise.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 14 / 31

A8. Finite Domain Representation FDR Task Semantics

Conflicting Effects

I As with propositional planning tasks, there is a subtlety:
what should an effect of the form v := a ∧ v := b mean?

I For FDR tasks, the common convention is to make this illegal,
i.e., to make an operator inapplicable if it would lead to
conflicting effects.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 15 / 31

A8. Finite Domain Representation FDR Task Semantics

Consistency Condition and Applicability

Definition (Consistency Condition)

Let e be an effect over finite-domain state variables V .

The consistency condition for e, consist(e) is defined as∧
v∈V

∧
d ,d ′∈dom(v),d 6=d ′

¬(effcond(v := d , e) ∧ effcond(v := d ′, e)).

Definition (Applicable FDR Operator)

An FDR operator o is applicable in a state s
if s |= pre(o) ∧ consist(eff(o)).

The definitions of sJoK etc. then follow in the natural way.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 16 / 31

A8. Finite Domain Representation FDR Task Semantics

Reminder: Semantics of Propositional Planning Tasks

Reminder from Chapter A4:

Definition (Transition System Induced by a Prop. Planning Task)

The propositional planning task Π = 〈V , I ,O, γ〉 induces
the transition system T (Π) = 〈S , L, c ,T , s0,S?〉, where

I S is the set of all valuations of V ,

I L is the set of operators O,

I c(o) = cost(o) for all operators o ∈ O,

I T = {〈s, o, s ′〉 | s ∈ S , o applicable in s, s ′ = sJoK},

I s0 = I , and

I S? = {s ∈ S | s |= γ}.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 17 / 31

A8. Finite Domain Representation FDR Task Semantics

Semantics of Planning Tasks

A definition that works for both types of planning tasks:

Definition (Transition System Induced by a Planning Task)

The planning task Π = 〈V , I ,O, γ〉 induces
the transition system T (Π) = 〈S , L, c ,T , s0,S?〉, where

I S is the set of states over V ,

I L is the set of operators O,

I c(o) = cost(o) for all operators o ∈ O,

I T = {〈s, o, s ′〉 | s ∈ S , o applicable in s, s ′ = sJoK},

I s0 = I , and

I S? = {s ∈ S | s |= γ}.

Planning task here refers to either a propositional or FDR task.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 18 / 31

A8. Finite Domain Representation FDR Task Semantics

Compilation Semantics

Definition (Induced Propositional Planning Task)

Let Π = 〈V , I ,O, γ〉 be an FDR planning task.
The induced propositional planning task Π′ is the (regular)
planning task Π′ = 〈V ′, I ′,O ′, γ′〉, where

I V ′ = {〈v , d〉 | v ∈ V , d ∈ dom(v)}
I I ′(〈v , d〉) = T iff I (v) = d
I O ′ and γ′ are obtained from O and γ by

I replacing each operator precondition pre(o)
by pre(o) ∧ consist(eff(o)), and then

I replacing each atomic formula v = d by the proposition 〈v , d〉,
I replacing each atomic effect v := d by the effect

〈v , d〉 ∧
∧

d′∈dom(v)\{d} ¬〈v , d ′〉.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 19 / 31

A8. Finite Domain Representation SAS+ Planning Tasks

A8.3 SAS+ Planning Tasks

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 20 / 31

A8. Finite Domain Representation SAS+ Planning Tasks

SAS+ Planning Tasks

Definition (SAS+ Planning Task)

An FDR planning task Π = 〈V , I ,O, γ〉 is called
an SAS+ planning task if

I there are no conditional effects in O, and

I all operator preconditions in O and the goal formula γ
are conjunctions of atoms.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 21 / 31

A8. Finite Domain Representation SAS+ Planning Tasks

SAS+ vs. STRIPS

I SAS+ is the analogue of STRIPS planning tasks for FDR

I induced propositional planning task of a SAS+ task
is a STRIPS planning task after simplification
(consistency conditions simplify to ⊥ or >)

I FDR tasks obtained by mutex-based reformulation
of STRIPS planning tasks are SAS+ tasks

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 22 / 31

A8. Finite Domain Representation Transition Normal Form

A8.4 Transition Normal Form

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 23 / 31

A8. Finite Domain Representation Transition Normal Form

Variables Occurring in Conditions and Effects

I Many algorithmic problems for SAS+ planning tasks
become simpler when we can make two further restrictions.

I These are related to the variables that occur
in conditions and effects of the task.

Definition (vars(ϕ), vars(e))

For a logical formula ϕ over finite-domain variables V ,
vars(ϕ) denotes the set of finite-domain variables occurring in ϕ.

For an effect e over finite-domain variables V ,
vars(e) denotes the set of finite-domain variables occurring in e.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 24 / 31

A8. Finite Domain Representation Transition Normal Form

Transition Normal Form

Definition (Transition Normal Form)

A SAS+ planning task Π = 〈V , I ,O, γ〉
is in transition normal form (TNF) if

I for all o ∈ O, vars(pre(o)) = vars(eff(o)), and

I vars(γ) = V .

In words, an operator in TNF must mention the same variables
in the precondition and effect, and a goal in TNF must mention
all variables (= specify exactly one goal state).

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 25 / 31

A8. Finite Domain Representation Transition Normal Form

Converting Operators to TNF: Violations

There are two ways in which an operator o can violate TNF:

I There exists a variable v ∈ vars(pre(o)) \ vars(eff(o)).

I There exists a variable v ∈ vars(eff(o)) \ vars(pre(o)).

The first case is easy to address: if v = d is a precondition
with no effect on v , just add the effect v := d .

The second case is more difficult: if we have the effect v := d
but no precondition on v , how can we add a precondition on v
without changing the meaning of the operator?

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 26 / 31

A8. Finite Domain Representation Transition Normal Form

Converting Operators to TNF: Multiplying Out

Solution 1: multiplying out

1 While there exists an operator o and a variable
v ∈ vars(eff(o)) with v /∈ vars(pre(o)):

I For each d ∈ dom(v), add a new operator that is like o
but with the additional precondition v = d .

I Remove the original operator.

2 Repeat the previous step until no more such variables exist.

Problem:

I If an operator o has n such variables, each with k values
in its domain, this introduces kn variants of o.

I Hence, this is an exponential transformation.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 27 / 31

A8. Finite Domain Representation Transition Normal Form

Converting Operators to TNF: Auxiliary Values

Solution 2: auxiliary values

1 For every variable v , add a new auxiliary value u to its domain.

2 For every variable v and value d ∈ dom(v) \ {u},
add a new operator to change the value of v from d to u
at no cost: 〈v = d , v := u, 0〉.

3 For all operators o and all variables
v ∈ vars(eff(o)) \ vars(pre(o)),
add the precondition v = u to pre(o).

Properties:

I Transformation can be computed in linear time.

I Due to the auxiliary values, there are new states
and transitions in the induced transition system,
but all path costs between original states remain the same.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 28 / 31

A8. Finite Domain Representation Transition Normal Form

Converting Goals to TNF

I The auxiliary value idea can also be used
to convert the goal γ to TNF.

I For every variable v /∈ vars(γ), add the condition v = u to γ.

With these ideas, every SAS+ planning task can be
converted into transition normal form in linear time.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 29 / 31

A8. Finite Domain Representation Summary

A8.5 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 30 / 31

A8. Finite Domain Representation Summary

Summary

I Planning tasks in finite-domain representation (FDR)
are an alternative to propositional planning tasks.

I FDR tasks are often more compact (have fewer states).

I This makes many planning algorithms more efficient
when working with a finite-domain representation.

I SAS+ tasks are a restricted form of FDR tasks where
only conjunctions of atoms are allowed in the preconditions,
effects and goal. No conditional effects are allowed.

I Transition normal form (TNF) is even more restricted:
for each operator, preconditions and effects must mention
the same variables, and there must be a unique goal state.

I SAS+ tasks can be converted to TNF in linear time.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 31 / 31

	FDR Planning Tasks
	FDR Task Semantics
	SAS+ Planning Tasks
	Transition Normal Form
	Summary

