

Planning and Optim October 9, 2017 — A7. Invaria	ization ants and Mutexes		
A7.1 Invariants			
A7.2 Computing Invariants			
A7.3 Mutexes			
A7.4 Summary			
M. Helmert, G. Röger (Universität Basel)	Planning and Optimization	October 9, 2017	2 / 16

Invariants

Invariants

5 / 16

7 / 16

Computing Invariants

Invariants: Definition

When we as humans reason about planning tasks, we implicitly make use of "obvious" properties of these tasks.

► Example: we are never in two places at the same time

Planning and Optimization

Planning and Optimization

- We can represent such properties as logical formulas φ that are true in all reachable states.
 - Example: $\varphi = \neg (at\text{-uni} \land at\text{-home})$
- Such formulas are called invariants of the task.

A7. Invariants and Mutexes

M. Helmert, G. Röger (Universität Basel)

October 9, 2017

A7.2 Computing Invariants

Invariants

A7. Invariants and Mutexes

Invariant Synthesis Algorithms

Most algorithms for generating invariants are based on the generate-test-repair approach:

- Generate: Suggest some invariant candidates, e.g., by enumerating all possible formulas φ of a certain size.
- Test: Try to prove that φ is indeed an invariant. Usually done inductively:
 - **1** Test that initial state satisfies φ .
 - Provide the example of the exampl
- Repair: If invariant test fails, replace candidate φ
 by a weaker formula, ideally exploiting why the proof failed.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

October 9, 2017

9 / 16

Computing Invariants

Computing Invariants

A7. Invariants and Mutexes

Derive a more compact state space representation (i.e., with fewer unreachable states).

We now briefly discuss the last point because it is important for planning tasks in finite-domain representation, introduced in the following chapter.

A7. Invariants and Mutexes

Invariant Synthesis: References

We will not cover invariants in detail in this course.

Literature on invariant synthesis:

- DISCOPLAN (Gerevini & Schubert, 1998)
- ▶ TIM (Fox & Long, 1998)
- Edelkamp & Helmert's algorithm (1999)
- Bonet & Geffner's algorithm (2001)
- Rintanen's algorithm (2008)

M. Helmert, G. Röger (Universität Basel)

October 9, 2017

10 / 16

Planning and Optimization

A7. Invariants and Mutexes

Mutexes

Mutexes

Invariants that take the form of binary clauses are called mutexes because they express that certain variable assignments cannot be simultaneously true and are hence mutually exclusive.

Example (Blocks World)

The invariant $\neg A \text{-} on \text{-} B \lor \neg A \text{-} on \text{-} C$ states that A - on - B and A - on - C are mutex.

We say that a larger set of literals is mutually exclusive if every subset of two literals is a mutex.

Example (Blocks World)

Every pair in {*B-on-A*, *C-on-A*, *D-on-A*, *A-clear*} is mutex.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

October 9, 2017 13 / 16

Summar

15 / 16

A7. Invariants and Mutexes

A7.4 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization

Encoding Mutex Groups as Finite-Domain Variables

Let $L = \{\ell_1, \dots, \ell_n\}$ be mutually exclusive literals over *n* different variables $V_L = \{v_1, \dots, v_n\}$.

Then the planning task can be rephrased using a single finite-domain (i.e., non-binary) state variable v_L with n + 1 possible values in place of the *n* variables in V_I :

- n of the possible values represent situations in which exactly one of the literals in L is true.
- The remaining value represents situations in which none of the literals in L is true.
 - Note: If we can prove that one of the literals in L must be true in each state (i.e., ℓ₁ ∨ · · · ∨ ℓ_n is an invariant), this additional value can be omitted.

In many cases, the reduction in the number of variables dramatically improves performance of a planning algorithm.

M. Helmert, G. Röger (Universität Basel)

A7. Invariants and Mutexes

Planning and Optimization

October 9, 2017

14 / 16

