
Planning and Optimization
A7. Invariants and Mutexes

Malte Helmert and Gabriele Röger

Universität Basel

October 9, 2017

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 1 / 16

Planning and Optimization
October 9, 2017 — A7. Invariants and Mutexes

A7.1 Invariants

A7.2 Computing Invariants

A7.3 Mutexes

A7.4 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 2 / 16

Content of this Course

Planning

Tasks

Progression/
Regression

Complexity

Heuristics

Types

Combination

ComparisonSymbolic Search

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 3 / 16

A7. Invariants and Mutexes Invariants

A7.1 Invariants

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 4 / 16



A7. Invariants and Mutexes Invariants

Invariants

I When we as humans reason about planning tasks, we
implicitly make use of “obvious” properties of these tasks.

I Example: we are never in two places at the same time

I We can represent such properties as logical formulas ϕ
that are true in all reachable states.

I Example: ϕ = ¬(at-uni ∧ at-home)

I Such formulas are called invariants of the task.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 5 / 16

A7. Invariants and Mutexes Invariants

Invariants: Definition

Definition (Invariant)

An invariant of a planning task Π with state variables V
is a logical formula ϕ over V such that s |= ϕ
for all reachable states of Π.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 6 / 16

A7. Invariants and Mutexes Computing Invariants

A7.2 Computing Invariants

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 7 / 16

A7. Invariants and Mutexes Computing Invariants

Computing Invariants

How does an automated planner come up with invariants?

I Theoretically, testing if an arbitrary formula ϕ
is an invariant is as hard as planning itself.
 proof idea: a planning task is unsolvable iff

 

the negation of its goal is an invariant

I Still, many practical invariant synthesis algorithms exist.

I To remain efficient (= polynomial-time), these algorithms
only compute a subset of all useful invariants.
 sound, but not complete

I Empirically, they tend to at least find the “obvious”
invariants of a planning task.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 8 / 16



A7. Invariants and Mutexes Computing Invariants

Invariant Synthesis Algorithms

Most algorithms for generating invariants are based on
the generate-test-repair approach:

I Generate: Suggest some invariant candidates, e.g., by
enumerating all possible formulas ϕ of a certain size.

I Test: Try to prove that ϕ is indeed an invariant.
Usually done inductively:

1 Test that initial state satisfies ϕ.
2 Test that if ϕ is true in the current state,

it remains true after applying a single operator.

I Repair: If invariant test fails, replace candidate ϕ
by a weaker formula, ideally exploiting why the proof failed.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 9 / 16

A7. Invariants and Mutexes Computing Invariants

Invariant Synthesis: References

We will not cover invariants in detail in this course.

Literature on invariant synthesis:

I DISCOPLAN (Gerevini & Schubert, 1998)

I TIM (Fox & Long, 1998)

I Edelkamp & Helmert’s algorithm (1999)

I Bonet & Geffner’s algorithm (2001)

I Rintanen’s algorithm (2008)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 10 / 16

A7. Invariants and Mutexes Computing Invariants

Exploiting Invariants

Invariants have many uses in planning:

I Regression search:
Prune states that violate (are inconsistent with) invariants.

I Planning as satisfiability:
Add invariants to a SAT encoding of a planning task
to get tighter constraints.

I Reformulation:
Derive a more compact state space representation
(i.e., with fewer unreachable states).

We now briefly discuss the last point because it is important
for planning tasks in finite-domain representation,
introduced in the following chapter.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 11 / 16

A7. Invariants and Mutexes Mutexes

A7.3 Mutexes

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 12 / 16



A7. Invariants and Mutexes Mutexes

Mutexes

Invariants that take the form of binary clauses are called mutexes
because they express that certain variable assignments cannot be
simultaneously true and are hence mutually exclusive.

Example (Blocks World)

The invariant ¬A-on-B ∨ ¬A-on-C states that
A-on-B and A-on-C are mutex.

We say that a larger set of literals is mutually exclusive
if every subset of two literals is a mutex.

Example (Blocks World)

Every pair in {B-on-A,C-on-A,D-on-A,A-clear} is mutex.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 13 / 16

A7. Invariants and Mutexes Mutexes

Encoding Mutex Groups as Finite-Domain Variables

Let L = {`1, . . . , `n} be mutually exclusive literals
over n different variables VL = {v1, . . . , vn}.
Then the planning task can be rephrased using a single
finite-domain (i.e., non-binary) state variable vL
with n + 1 possible values in place of the n variables in VL:

I n of the possible values represent situations
in which exactly one of the literals in L is true.

I The remaining value represents situations
in which none of the literals in L is true.

I Note: If we can prove that one of the literals in L
must be true in each state (i.e., `1 ∨ · · · ∨ `n is an invariant),
this additional value can be omitted.

In many cases, the reduction in the number of variables
dramatically improves performance of a planning algorithm.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 14 / 16

A7. Invariants and Mutexes Summary

A7.4 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 15 / 16

A7. Invariants and Mutexes Summary

Summary

I Invariants are common properties of all reachable states,
expressed as logical formulas.

I A number of algorithms for computing invariants exist.

I These algorithms will not find all useful invariants
(which is too hard), but try to find some useful subset
with reasonable (polynomial) computational effort.

I Mutexes are invariants that express that certain pairs
of literals are mutually exclusive.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 9, 2017 16 / 16


	Invariants
	Computing Invariants
	Mutexes
	Summary

