Planning and Optimization A1. Organizational Matters

Malte Helmert and Gabriele Röger

Universität Basel

September 20, 2017

People & Coordinates

People: Lecturers

Malte Helmert

Gabriele Röger

Lecturers

Malte Helmert

- email: malte.helmert@unibas.ch
- office: room 06.004, Spiegelgasse 1

Gabriele Röger

- email: gabriele.roeger@unibas.ch
- office: room 04.005, Spiegelgasse 1

People: Assistant

Florian Pommerening

Assistant

Florian Pommerening

- email: florian.pommerening@unibas.ch
- office: room 04.005, Spiegelgasse 1

Time & Place

Lectures

- time: Mon 14:15-16:00, Wed 14:15-16:00
- place: room 00.003, Spiegelgasse 1

Exercise Sessions

- time: Wed 16:15-18:00
- place: room 05.001, Spiegelgasse 5

first exercise session: today

Planning and Optimization Course on the Web

Course Homepage

http://cs.unibas.ch/hs2017/ vorlesung-planning-and-optimization/

- course information
- slides
- exercise sheets and materials
- bonus materials (not relevant for the exam)

registration:

- https://services.unibas.ch/
- Please register today to receive all course-related emails!

Target Audience & Rules

Target Audience

target audience:

- M.Sc. Computer Science/Informatik
 - "new" degree, Major in Machine Intelligence: module Concepts of Machine Intelligence
 - "new" degree, Major in Distributed Systems: module Applications of Distributed Systems
 - "old" degree: module Kerninformatik (core) or module Praxis aktueller Informatikmethoden (electives)
- M.A. Computer Science ("Master-Studienfach")
- other students welcome

Prerequisites

prerequisites:

- general computer science background: good knowledge of
 - algorithms and data structures
 - complexity theory
 - mathematical logic
 - programming
- background in Artificial Intelligence:
 - Foundations of Artificial Intelligence course (13548)
 - in particular chapters on state-space search

Gaps?

→ talk to Florian to discuss a self-study plan to catch up

Exam

- oral examination (20–25 min)
- dates: February 5–7
- 8 ECTS credits
- admission to exam: 50% of the exercise marks
- final grade based on exam exclusively
- no repeat exam

Exercise Sheets

exercise sheets (homework assignments):

- solved in groups of at most two (2 < 3), submitted via Courses
- project-oriented assignments
 - six exercise sheets, each covering one part of the lecture

 - handed out at beginning of each part
 - work on these while we cover this part in the lecture
 - due one week after the end of the part
 - scope and marks proportional to covered topics
- mixture of theory, programming and experiments

Programming Exercises

programming exercises:

- part of regular assignments
- solutions that obviously do not work: 0 marks
- work with existing C++ and Python code
- Linux (other operating systems: please discuss with Florian)
- pull from Mercurial (hg) repository

Exercise Sessions

exercise sessions:

- discuss past homework assignments
- ask questions about current assignments (and course)
- work on homework assignments
- sometimes live exercises

Plagiarism (Wikipedia)

Plagiarism is the "wrongful appropriation" and "stealing and publication" of another author's "language, thoughts, ideas, or expressions" and the representation of them as one's own original work.

consequences:

- 0 marks for the exercise sheet (first time)
- exclusion from exam (second time)

if in doubt: check with us what is (and isn't) OK before submitting exercises too difficult? we are happy to help!

Course Content

Learning Objectives

Learning Objectives

- get to know theoretical and algorithmic foundations of classical planning as well as practical implementation
- understand fundamental concepts underlying modern planning algorithms and theoretical relationships that connect them
- become equipped to understand research papers and conduct projects in this area

Course Material

course material:

- slides (online + printed handouts)
- no textbook
- additional material on request

Hands-On Week

- Next week will be a hands-on week organized by Florian.
- Please bring your laptop to next week's sessions (Monday and Wednesday).

Don't own a laptop?

• no problem, we will do the hands-on in groups of 2

Today's Exercise Session

- To make the hands-on week work smoothly, we try to work out compilation issues etc. today in the exercise session.
- The goal of today's exercise session is that you can run the examples of today's lecture on your own machine.
- The following slide contains the main information for today's setup for your future reference.
- In any case, please complete the setup before next Monday.
- We are happy to help you if you run into problems.

Your First Tasks (1)

Getting Started: Cloning the Repository

Clone the course repository:

hg clone https://bitbucket.org/aibasel/planopt-hs17

Enter the repository:

cd planopt-hs17

Enter the demo directory:

cd demo

Your First Tasks (2)

Getting Started: Building Fast Downward

Build Fast Downward and set a symbolic link:

```
cd fast-downward
./build.py -j4
cd ..
```

ln -s fast-downward/fast-downward.py .

- See build instructions and dependencies at: http://www. fast-downward.org/ObtainingAndRunningFastDownward.
- Note that we use our own repository, not hg.fast-downward.org.
- You can skip the optional information regarding the LP solver.

Test fast-downward.py with the examples in the next chapter. (We will withhold some of the example inputs for now because you will work on them in the hands-on week.)

Your First Tasks (3)

Getting Started: Building VAL

Build VAL and set a symbolic link:

```
cd VAL
make -j4
cd ..
ln -s VAL/validate .
```

 The main dependencies of VAL are g++, make, flex and bison (Ubuntu package names).

Test validate with the examples in the next chapter.

Under Construction...

Course Content

- This is a new course.
- We are always happy about feedback, corrections and suggestions!