
Planning and Optimization

M. Helmert, G. Röger
F. Pommerening

University of Basel
Fall Semester 2017

Exercise Sheet E
Due: December 5, 2017

The files required for this exercise are in the directory exercise-e of the course repository
(https://bitbucket.org/aibasel/planopt-hs17). All paths are relative to this directory. Up-
date your clone of the repository with hg pull -u to see the files.

Exercise E.1 (4+4+4+3 marks)

(a) In the files fast-downward/src/search/planopt heuristics/critical paths.* you can
find an incomplete implementation of the hm heuristic. Complete the implementation of the
methods current cost and compute heuristic basic according to the algorithm in slides
E1.

The methods in the file set utils.h might be useful for manipulating partial states (repre-
sented as sets of proposition IDs).

(b) The implementation from exercise (a) is inefficient. Use a profiler to find out why and imple-
ment an improved version in the method compute heuristic improved. Clearly document
the improvements you made and describe why you made them.

One way to profile the code is to use the tool callgrind from the profiling suite valgrind. You
can call it on your implementation as follows

./fast-downward.py --translate /path/to/task.pddl

valgrind --tool=callgrind ./builds/release32/bin/downward \
--search "astar(planopt hm(m=2, improved=false))" < output.sas

Change the flag “improved” to true if you want to test your improved implementation. Ex-
amples for possible improvements: precomputation of data that is computed again and again;
memoization; better choices to select the candidates in the hm algorithm; adding indirection
to avoid expensive copies, . . .

(c) Design, run, and report on an experiment that compares the built-in implementation (called
with hm(m=2)), your basic implementation, and your improved implementation of h2. Your
experiment should demonstrate that the three implementations compute the same heuristic
function and that your improvement from exercise (b) significantly improved the performance
of the computation.

(d) Consider the task Π = 〈V, I,O,G〉 with the set notation V = {w, x, y, z}, I = {w, x},
O = {o1, o2}, o1 = 〈{x}, {y}, {w}, 1〉, o2 = 〈{y}, {z}, ∅, 1〉, and G = {x, y, z}. Construct Π2

and show that there is an admissible heuristic h such that h∗Π(I) < hΠ2(I2).



Exercise E.2 (4+3+3+2+4 marks)

(a) In the files fast-downward/src/search/planopt heuristics/justification graph.* you
can find an incomplete implementation of the justification graph used by the LM-cut heuris-
tic. Complete the implementation of the constructor and the methods mark goal zone and
find cut edges by following the comments in the code. Then compute the LM-cut algo-
rithm in the method compute heuristic of the file lmcut.cc.

The hmax computation is integrated into the class DeleteRelaxedNormalFormTask for ef-
ficiency. The classes for operators and propositions track their hmax achievers and costs.
Calling the method compute hmax on the task will update these stored values.

You can call your heuristic as planopt lmcut() . If you compare it to the built-in implemen-
tation, note that the result of each heuristic evaluation depends on the precondition-choice
function that was used. The two implementations are not guaranteed to pick the same achiev-
ers, so they might give different results. However, in most tasks the heuristic value of the
initial state should be similar.

(b) Draw the justification graphs generated by LM-cut in the heuristic computation for the
initial state of the task in the directory lmcut. Label each node of the graph with the name
of the represented proposition and its hmax value. Label transitions with the correct operator
and its current cost. Also mark the goal zone and the cut in each graph.

You can do this exercise manually but it may be easier to adapt your algorithm from exercise
(a) to print the necessary information during the computation.

(c) In the files fast-downward/src/search/planopt heuristics/and or graph.* you can find
an incomplete implementation of the algorithm discovering landmarks in AND/OR graphs.
Complete the method compute landmarks to compute the set of landmarks for reaching the
given node in the graph.

You can use your implementation to compute disjunctive action landmarks and causal fact
landmarks for I in sRTG(Π+) by calling the planner as ./fast-downward.py /path/to/task

--compute-landmarks. The output lists all disjunctive action landmarks and the causal fact
landmarks that are not already true in the initial state. The task in the directory lmcount

contains the example task from the lecture for debugging.

(d) Use your implementation from exercise (c) to compute action and fact landmarks for the
task in the directory blocks.

Is the number of action landmarks an admissible heuristic for this task? Is the number
of fact landmarks (without those already true in the initial state) an admissible estimate?
Under which conditions are these statements true in general?

(e) Design an exercise about landmark orders for next year’s exercise sheet. The goal of your
exercise should be that someone who did not understand the difference between different
landmark orders and what they are used for in LM-count, will understand it after completing
the exercise. Your answer should include an exercise question, a model solution, and a brief
discussion on why the exercise achieves the learning objective.



Exercise E.3 (3+4+2 marks)

Consider the following TNF task Π = 〈V, I,O, γ〉 with

• Variables V = {a, b, c} with dom(a) = {1, 2, 3, 4, 5, 6, 7, 8}, dom(b) = {1, 2, 3, 4, 5, 6, 7}, and
dom(c) = {1, 2, 3, 4, 5},

• Initial state I = {a 7→ 1, b 7→ 1, c 7→ 1},

• Operators O = {o1, . . . , o14} where

– o1 = 〈(a = 1) ∧ (b = 1) ∧ (c = 1), (a := 2) ∧ (b := 2) ∧ (c := 2)〉
– o2 = 〈(a = 2) ∧ (b = 2) ∧ (c = 2), (a := 2) ∧ (b := 4) ∧ (c := 3)〉
– o3 = 〈(a = 2) ∧ (b = 2) ∧ (c = 2), (a := 3) ∧ (b := 3) ∧ (c := 2)〉
– o4 = 〈(a = 2) ∧ (b = 3) ∧ (c = 2), (a := 4) ∧ (b := 3) ∧ (c := 4)〉
– o5 = 〈(a = 3), (a := 2)〉
– o6 = 〈(b = 3), (b := 4)〉
– o7 = 〈(a = 3) ∧ (b = 3) ∧ (c = 3), (a := 5) ∧ (b := 5) ∧ (c := 5)〉
– o8 = 〈(a = 4) ∧ (b = 4) ∧ (c = 4), (a := 5) ∧ (b := 5) ∧ (c := 5)〉
– o9 = 〈(a = 5), (a := 6)〉
– o10 = 〈(a = 6) ∧ (b = 5), (a := 5) ∧ (b := 6)〉
– o11 = 〈(a = 6) ∧ (b = 6), (a := 7) ∧ (b := 6)〉
– o12 = 〈(a = 7) ∧ (b = 7), (a := 6) ∧ (b := 7)〉
– o13 = 〈(a = 7) ∧ (b = 6), (a := 8) ∧ (b := 7)〉
– o14 = 〈(a = 8) ∧ (b = 7), (a := 7) ∧ (b := 7)〉

and cost(o) = 1 for all o ∈ O,

• Goal γ = (a = 6) ∧ (b = 7) ∧ (c = 5).

(a) Provide the LP solved by the flow heuristic for I as an input file for the solver lp-solve. Use
each atom as the constraint name for its flow constraint so it is easy to see which constraint
belongs to which atom. Then solve the LP and provide the objective value and values for
all variables Counto in the discovered solution.

On Ubuntu you can install lp-solve with sudo apt install lp-solve. Its input format is
described on http: // lpsolve. sourceforge. net/ 5. 5/ lp-format. htm and in the exam-
ple file in the directory lp. You can run lp-solve using lp solve /path/to/file.lp.

(b) Draw the transition systems of the three projections to a, b, and c. For operators that do
not mention the variable, include just one representative self-loop at the goal state to keep
the transition system concise. Write the value of each operator in the optimal solution from
exercise (a) next to its name in the edge labels and highlight edges with a non-zero value.
What do you notice in the abstractions? Discuss your observations.

(c) Dualize the LP from exercise (a). For this exercise, you can treat all flow constraints as ≥-
constraints. For 1 Bonuspoint, dualize the general form of the LP solved by a flow heuristic.

The exercise sheets can be submitted in groups of two students. Please provide both student names
on the submission.


