Planning and Optimization

M. Helmert, G. Roger University of Basel
F. Pommerening Fall Semester 2017

Exercise Sheet D
Due: November 21, 2017

The files required for this exercise are in the directory exzercise-d of the course repository
(https://bitbucket.org/aibasel/planopt-hs17). All paths are relative to this directory. Up-
date your clone of the repository with hg pull -u to see the files. For the runs with Fast Down-
ward, set a time limit of 1 minute and a memory limit of 2 GB. Using Linuz, such limits can be
set with ulimit -t 60 and ulimit -v 2000000, respectively.

Exercise D.1 (4+2+1+4+2+2 marks)

(a) Consider the following graph G showing a simplified version of the reachable state space of
the beleaguered castle instance from exercise A.1 (f). Note that some operators that were
different in exercise A.1 (f) are now the same. Assume for this exercise that discarding a
card has a cost of 5 while moving a card has a cost of 1:

A 4
& S ld—z-r- ld-z.r.
2 2
d-2&
A 4
m-29

K1
R

m-ZoY-T

B3
EAE VY
i

I & m—SVI >

s

4y | pvev

Provide the following graphs:

RUIE S

e a graph GG; which is isomorphic to G but not the same.

e a graph G5 which is graph equivalent to G but not isomorphic to it.

e a graph G3 which is a strict homomorphism of G but not graph equivalent to it.

e a graph G4 which is a non-strict homomorphism of G but not graph equivalent to it.

e a graph G5 that is the transition system induced by the abstraction o that maps states
that are in the column 7 in the image above to the abstract state s;. For example, the
two states in the first column are mapped to an abstract state s; and the three states
in the second column to an abstract state ss.

e a graph Gg that is the induced transition system of an abstraction 3 that is a non-trivial
coarsening of .

e a graph G7 that is the induced transition system of an abstraction « that is a non-trivial
refinement of 8 but different from «.

In all cases, highlight an optimal path and compute its cost. For graphs G1—G4 also briefly
argue (one sentence) why they don’t have the property they are not supposed to have, for
example, why G5 is not isomorphic to G.



(b)

()

()

(e)

(f)

Point out the problems with the following ideas for abstraction mappings in the beleaguered
castle domain:

aq: For each card value v there is one abstract state representing all world states where v
is the highest undiscarded value.

ag: A state is mapped to an abstract state by ignoring the suit of the top card on each
tableau pile.

a3: There are up to n = 108 abstract states sg,...,s,. A world state s is mapped to the
abstract state s, where k is the MD5 hash of s modulo 10°.

ay: All states s with 0 < h*(s) < 5 are mapped to the first abstract state, all states s with
5 < h*(s) < 10 are mapped to the second abstract state, and so on.

Prove the following claim from the lecture: let a; and ao be abstractions of a transition
system T . If no label of T affects both 7 and 7“2, then oy and ag are orthogonal.

Let IT be a SAS™ planning task that is not trivially unsolvable and does not contain trivially
inapplicable operators, and let P be a pattern for II. Prove that 7 (II|p) R T(I)7™ ie.,
T (II|p) is graph-equivalent to 7 (II)™7.

Discuss the theorem from exercise (d). What is it good for? Why is it important to exclude
trivially unsolvable tasks or trivially inapplicable operators?

Provide an FDR task that is not trivially unsolvable and does not contain trivially inappli-
cable operators, and a pattern P for II such that 7 (I1|p) 7 T (II)™». Explain your solution.

Exercise D.2 (44+3+2+342+4+2 marks)

(a)

In the files fast-downward/src/search/planopt_heuristics/projection.* you can find
an incomplete implementation of a class projecting a TNF task to a given pattern. Complete
the implementation by projecting the initial state, the goal state and the operators.

The example task from the lecture and two of its projections are implemented in the method
test_projections. You can use them to test and debug your implementation by calling Fast
Downward as ./fast-downward.py --test-projections.

In the files fast-downward/src/search/planopt_heuristics/pdb.* you can find an in-
complete implementation of a pattern database. Complete the implementation by computing
the distances for all abstract states as described in the code comments.

You can use the built-in implementation of Fast Downward to debug your code as explained
in exercise (c).

Use the heuristic pdb(pattern=greedy(1000)) to find a good pattern with at most 1000
abstract states for each instance in the directory castle. Then run your implementation
from exercise (b) using the heuristic planopt_pdb(pattern=P). For each instance use the
same pattern P used by the built-in implementation.

Compare the two implementations and discuss the preprocessing time, the search time, and
the number of expanded states excluding the last f-layer (printed as “Expanded until last
jump”). Repeat the experiment for 100000 abstract states and compare the results.

In the files fast-downward/src/search/planopt_heuristics/canonical_pdbs.* you can
find an incomplete implementation of the canonical pattern database heuristic. Complete the
implementation in the methods build_compatibility_graph and compute_heuristic to
create the compatibility graph for a given pattern collection and for computing the heuristic
value given the maximal cliques of that graph.

You can use the built-in implementation of Fast Downward to debug your code as explained
in exercise (e).



(e) Use the heuristic cpdbs (patterns=combo(1000)) to find a good pattern collection with at
most 1000 abstract states for each instance in the directory nomystery-opt11-strips. Then
run your implementation from exercise (d) using the heuristic planopt_cpdbs (patterns=C).
For each instance use the same pattern collection C' used by the built-in implementation.

Compare the two implementations and discuss the total time, and the number of expanded
states excluding the last f-layer (printed as “Expanded until last jump”). Also compare
your results to using a single pattern database heuristic with up to 1000 abstract states as
in exercise (c).

(f) In the files fast-downward/src/search/planopt _heuristics/pattern hillclimbing.*
you can find an incomplete implementation of the hill-climbing search for iPDB. Com-
plete the implementation in the methods fits_size_bound, compute_initial_collection,
compute_neighbors, and run by following the comments in the code.

The built-in implementation of Fast Downward is different in some details so its results are
not guaranteed to match those of your implementation.

(g) Use the heuristic ipdbs(collection max_size=1000, min_improvement=1) on the instances
in the directory nomystery-opti1l-strips. This will use hill climbing to find a pattern col-
lection with at most 1000 abstract states and continues as long as there is a state with an
improved heuristic value. Then run your implementation from exercise (f) using the heuristic
planopt_ipdb(size_bound=1000).

Compare the two implementations and discuss the total time and the number of expanded
states excluding the last f-layer (printed as “Expanded until last jump”). Also compare
your results to the results from exercise (e).

The bash scripts in the directory scripts can be extended to run your experiments.

Exercise D.3 (74+5+3 marks)

(a) Consider the planning domain “Gripper” where one robot with two arms (“grippers”) moves
n balls from a room A to a room B. It consists of the planning tasks II,, = (V,I,0,~) with

e Variables V' = {at,, empty;, emptyp} U {aty, | 1 < i < n} with dom(at.) = {A, B},
dom(empty;) = dom(emptyg) = {T,F}, dom(aty,) = {A,B,L,R} for 1 <i <mn.
e Initial state I = {at, — B, empty; — T, emptyr — T}U{atp, = A|1<i<n}

e Operators O = {movea, g, movep 4}
U {piCk'upi,z,g | 1 S { S n,r e {A7B}>g € {L7R}}
U{drop; ., |1 <i<n,xz€{A B}, ge{L,R}}

where
= movegy = ((at, = x), (at, :=y), 1)
— pick-up; , , = ((at = x) A(aty, = x) A (empty, = T), (aty, := g) A (empty, :=F),1)

- dropzzg <( T —l‘) (atbi :9)7(atbi = x)/\(emptyg = T)a1>
e Goal v = A, (aty, = B)

For simplicity, we assume that n is even. Then the optimal solution of task II,, has cost 3n
(each ball is picked up and dropped once, and for every two balls the robot has to move to
A once and then back to B).

Show that polynomially sized merge&shrink heuristics can lead to an exponentially smaller
search effort than polynomially sized pattern database heuristics in this domain. To do so,
first show that every pattern database heuristic that uses a pattern P C V must have an
imperfect heuristic value for all states with a certain property. (We exclude the case P =V
here because a PDB for all variables no longer has a polynomial size.) Show that there is
an exponential number of states with this property that can be reached with a plan cheaper



than 3n. An A* search with such a heuristic will expand all of these states before expanding
the goal state.

Next, show that there is a merge strategy and a shrink strategy that will result in a perfect
heuristic while maintaining polynomial sized transition systems. An A* search with the
perfect heuristic (and sensible tie-breaking) will expand only 3n states.

(b) Consider a set X = {71, T2} of abstract transition systems with identical label set L =
{l1,...,1l7} and cost function ¢ such that c(l1) = ¢(l4) = c¢(lg) = 1 and c(l2) = ¢(I3) = ¢(l5) =
¢(l7) = 2. T1 and T3 are depicted graphically below. As usual, an incoming arrow indicates
the initial state, and goal states are marked by a double rectangle.

e Determine a mapping A : L — L’ that maps all 7T;-combinable labels with identical
cost to the same (new) label and all labels [ that are not 7;-combinable with another
label to I. Let ¢’ be the cost function that allows exact label reduction with (A, ¢’).

Graphically provide Tl</\’c/> and ’7‘2(/\’Cl>.
e Graphically provide the transition systems 77 and 77" that result from shrinking 7'10"6/)
with the following shrinking strategies:
— 7T{ results from applying f-preserving shrinking, and

— T results from applying bisimulation-based shrinking.

e Graphically provide the transition systems 7{ ® 7'2<>"CI>, T'® 7'2<)"C/>7 and 71 ® T5. How
do they compare with respect to size and heuristic value of the initial state?

(c) Let X and X' be collections of transition systems. Why is h(s) = k%, (0(s)) not necessarily
an admissible heuristic for Ty if the transformation from X to X’ is not safe? Discuss the
question for each of the following reasons why a transformation with functions ¢ and A can
be unsafe:

o /(A(])) > ¢(l) for at least one l € L

e there is a transition (s,,t) of Tx such that {(o(s), A(1),c(t)) is not a transition of Tx,
or

e there is a goal state s of Tx such that o(s) is not a goal state of Tx.

The exercise sheets can be submitted in groups of two students. Please provide both student names
on the submission.



