Planning and Optimization

E3. Symbolic Search: Uniform-cost and A* search

Malte Helmert and Gabriele Roger

Universitat Basel

December 19, 2016

Intra

oduc

tion

Introduction

Introduction
oe

Introduction

@ Previous chapter: Symbolic breadth-first search

@ Optimal plans only guaranteed for unit-cost tasks
(= all operators same cost)

@ Optimal planning in explicit-state forward search:

o (uninformed) uniform-cost search
o (informed) A* search
o ...

Analogous algorithms for symbolic (BDD-based) search?

Symbolic Uniform-Cost Search

Symbolic Uniform-Cost Search
O®000000000000

Cost-separated Transition Relations

@ Previously: one transition relation Ty (O) for all operators

@ Now: several transition relations for operators of same cost

@ Set T of pairs (T, c), where T is a transition relation for
one/some/all operators of cost ¢

o All operators must be covered (and nothing else):

U(T,c)eT r(T) =r(Tv(0))
e The cost must be correct:
For (T,c') € Tt if a€ r(T) then a =V ,co.cost(o)=c Tv(0)

Many possibilities to split up Ty/(O) (discussed later)

Symbolic Uniform-Cost Search
00®00000000000

Image Computation

@ The apply function (previous chapter) computes the set of
states S’ that can be reached from a set of states S by
applying one operator.

@ This is called the image of S wrt. transition relation T\(O).

@ Now: image computation for arbitrary transition relations.

def image(B, T):
B := bdd-intersection(B, T)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B

Exactly like apply but gets transition relation as argument.

Introduction Symbolic Uniform-Cost Search
000®0000000000

Symbolic Uniform-Cost Search (Positive Operator Costs

def symbolic-uniform-cost(V, I, O, 7):
goal := build-BDD(~)
T := make-transition-relations(V, O)
openg := bdd-state(l)
while Jg : open, # 0:
g = min{g | open, # 0}
closedg := open,
if bdd-intersection(open,, goal) # 0:
return construct-plan(/, O, goal, closed,, g)
forall (T,c)eT:
openg., . := bdd-union(open, ,
image(openy, T))
open, :=0
return unsolvable

Symbolic Uniform-Cost Search
0000®000000000

Pre-image Computation

@ The image of S wrt. transition relation T computes the set of
states that can be reached from S by applying a transition
represented by T.

@ The pre-image of S wrt. T is the set of states from which we
can reach S by applying a transition represented by T.

def pre-image(B, T):
for each v ¢ V:
B := bdd-rename(B, v, v')
B := bdd-intersection(B, T)
for each v € V:
B := bdd-forget(B, v')
return B

Symbolic Uniform-Cost Search
00000e00000000

Plan Extraction (Positive Operator Costs)

def construct-plan(/, O, goal, closed,, g):
cut := bdd-intersection(goal, closedy)
init := bdd-state(l)

= ()
while bdd-intersection(cut, init) = 0:
for o € O:

pre := pre-image(cut, 7v/(0))
if ¢ := bdd-intersection(pre, closed, _,st(0)) 7 O:
cut:=c
g = g — cost(o)
= (o)
break
return)

Symbolic Uniform-Cost Search
000000®0000000

Zero-cost Operators

What is the problem with zero-cost operators?

@ Search: could re-open open, after it was moved to closedy,
possibly running into an infinite loop
— Apply all zero-cost operators before closing

@ Plan extraction: could loop in zero-cost cycles
— special treatment

Symbolic Uniform-Cost Search
0000000e000000

Breadth-first Exploration with Zero-cost Operators

def bfs-zero(B, g, T, goal):

i:=0

closedg j :== B

while B # 0 and bdd-intersection(B, goal) = 0:
B :=0

for (T,c) e T,c=0:
B’ := bdd-union(B’, image(B, T))
B := bdd-intersection(B’, bdd-complement(closedy ;))
ii=i+1
closedg ; := bdd-union(B, closedg ;1)
return closed, ;

Introduction Symbolic Uniform-Cost Search
00000000e00000

Symbolic Uniform-Cost Search

def symbolic-uniform-cost(V, /, O, v):
goal := build-BDD(~)
T := make-transition-relations(V, O)
openy := bdd-state(l)
while 3g : open, # 0:
g = min{g | open, # 0}
open, := bfs-zero(open,, g, T , goal)
closedy := open,
if bdd-intersection(open,, goal) # 0:
return construct-plan(/, O, goal, closed, g)
for all (T,c) € T with ¢ > 0:
openg., . := bdd-union(open,_ .,
image(openy, T))
open, :=0
return unsolvable

Symbolic Uniform-Cost Search
000000000e0000

Plan Extraction with Zero-cost Operators

Needs all closed sets form bfs-zero and symbolic-uniform-cost.

def construct-plan(/, O, goal, closed. .., g):
cut := bdd-intersection(goal, closedy)
init :== bdd-state(l); = := ()
while bdd-intersection(cut, init) = 0:
cut, 7 := get-to-bfs-level-0(cut, g, closedg ., m, O)
if g =0:
return
for o € O with cost(o) > 0:
pre := pre-image(cut, 7y/(0))
if ¢ := bdd-intersection(pre, closed, _ost(0)) 7 O:
cut:=c; m:= (o)
g = g — cost(0)
break
return 7

Symbolic Uniform-Cost Search
0000000000800

Plan Extraction: Zero-Cost Plan Fragment

def get-to-bfs-level-0(cut, g, closedg ., m, O):
level :== 0
while bdd-intersection(cut, closedg jever) = 0:
level := level + 1
while /evel # 0:
for o € O with cost(o) = 0:
pre := pre-image(cut, 7y/(0))
if ¢ := bdd-intersection(pre, closedg jevel—1) 7 O:
cut:=c
level .= level — 1
= (o)
break
return cut,

Symbolic Uniform-Cost Search
00000000000 e00

Pruning of Closed States

@ In explicit-state uniform-cost search, we never
re-expand closed states.

@ We can easily introduce such pruning in
symbolic uniform-cost search.

Introduction Symbolic Uniform-Cost Search
0000000000080

Uniform-Cost Search with Pruning of Closed States

def symbolic-uniform-cost(V, /, O, v):
goal := build-BDD(~)
T := make-transition-relations(V, O)
openy := bdd-state(l)
while 3g : open, # 0:
g = min{g | open, # 0}
open, := bfs-zero(open,, g, T, goal, closed..)
closedy := open,
if bdd-intersection(open,, goal) # 0:
return construct-plan(/, O, goal, closed, g)
for all (T,c) € T with ¢ > 0:
openg., . := bdd-union(open,_ .,
image(openy, T))
open, :=0
return unsolvable

Introduction Symbolic Uniform-Cost Search
0000000000000e

bfs-zero with Pruning of Closed States

def bfs-zero(B, g, T, goal, prune):
for P € prune:
B := bdd-intersection(B, bdd-complement(P))

i:=0

closedg j :== B

while B # 0 and bdd-intersection(B, goal) = 0:
B':=0

for (T,c)eT,c=0:
B’ := bdd-union(B’, image(B, T))
B := bdd-intersection(B’, bdd-complement(closedy ;))
for P € prune:
B := bdd-intersection(B, bdd-complement(P))
i=i+1
closedy ; := bdd-union(B, closedg ;_1)
return closedg ;

Symbolic A*

Symbolic A*
©0®000

Symbolic A

o Difference between explicit-state uniform-cost search and A*:
heuristic to guide search

o f=g+h
@ Analogously in symbolic search

@ Heuristic given as set heur of BDDs heury,
for each heuristic estimate h

Introduction Sy i Cost Search Symbolic A*
00« 00®00

Symbolic A* (with Consistent Heuristic)

def symbolic-AStar(V, I, O, ~, heur):

goal := build-BDD(~)

T := make-transition-relations(V, O)

openg p) = bdd-state(/)

while 3g, h : open, ,, # O:
f :=min{f | 3g,h: open, , #0,f = g + h}
g :=min{g | 3h:open, , #0,f =g+ h}
open, , := expandy(open, ., g, h, T, goal, heur, closed.)
closedy := bdd-union(closedg, open,)
if bdd-intersection(open, j,, goal) # 0:

return construct-plan(/, O, goal, closed,, g)

open, , := expand-(open, ., g, h, T, heur)
openg p, :=0

return unsolvable

Introduction Sy Search Symbolic A*
ofe 00®00

Symbolic A* (with Consistent Heuristic)

def symbolic-AStar(V, I, O, ~, heur):

goal := build-BDD(~)

T := make-transition-relations(V, O)

openg p) = bdd-state(/)

while 3g, h : open, ,, # O:
f :=min{f | 3g,h: open, , #0,f = g + h}
g :=min{g | 3h:open, , #0,f = g+ h}
open, , := expandy(open, ., g, h, T, goal, heur, closed.)
closedy := bdd-union(closedg, open,)
if bdd-intersection(open, j,, goal) # 0:

return construct-plan(/, O, goal, closed,, g)

open, , := expand-(open, ., g, h, T, heur)
openg p, :=0

return unsolvable

For performance it is important to expand the minimum g value.

Symbolic A*
0o0e0

Expand States and Update Open Lists

def expando(open,. ., g, h, T, goal, heur, prune):
B := bfs-zero(open, p,, (g, h), T, goal, prune)
for heury € heur,h < h < oc:
B’ := bdd-intersection(heury , open-zero)
open, y := bdd-union(open, ;, B')
return open, .

def expand.o(open, ,, g, h, T, heur):
for all (T,c) e T,c>0:
B := image(open, 5, T)
for heury € heur,h —c < h < oo:
B’ := bdd-intersection(heury , open-zero)
open,., .y := bdd-union(open, . . v, B)
return open, ,

Symbolic A*
ooooe

Heuristics

How can we generate symbolic heuristics?
@ Symbolic Pattern Databases

e Uniform-cost search can easily be adapted to regression search.

e Can search backwards in abstract transition systems

o BDD for closed states with (backwards-) g-value i
is heuristic BDD for h = i.

@ Merge-and-Shrink Abstractions

o Algebraic Decision Diagrams are like BDDs but sink nodes
are labeled with arbitrary numbers.

o Can map states to numbers.

o Cascading tables of merge-and-shrink heuristics with linear
merge strategy can efficiently be transformed into an ADD.

o Result can be used in symbolic search instead of BDD set.

Discussion

Discussion
0®00

Importance of Variable Ordering

@ For good performance, we need a good variable ordering.

e Variables that refer to the same state variable before and after
operator application (v and v’) should be neighbors in the
transition relation BDD.

@ This is important for the performance of BDD-rename in the
image and pre-image computation.

Discussion
00®0

Transition Relations in T

@ We only required that all operators are represented
by some (T,c) € T and that the costs are correct.
o Extreme cases:

o One element (7v(0), cost(0)) for each operator o

e Only one element for each operator cost,
covering all operators of that cost.

@ Trade-off:

e Large number of entries leads to large number
of image computations.

e Size of T can grow exponentially with number
of covered operators.

@ There exist different aggregation strategies.

Discussion
oooe

Performance

@ In symbolic planning, blind search is often better than
informed search.

@ Practical implementations also perform regression or
bidirectional search.

@ This is only a minor modification of uniform-cost search.

Summary

Summary
©0®000

Summary

@ Symbolic search operates on sets of states instead of
individual states as in explicit-state search.

@ State sets and transition relations can be represented
as BDDs.

@ A good variable ordering and an efficient image computation
are crucial for performance.

Summary
00®00

Literature |

@ Randal E. Bryant.
Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers 35.8, pp. 677—691, 1986.
Reduced ordered BDDs.

[Kenneth L. McMillan.
Symbolic Model Checking.
PhD Thesis, 1993.
Symbolic search with BDDs.

Summary
0000

Literature Il

[Stefan Edelkamp and Frank Reffel.
OBDDs in Heuristic Search.
Proc. KI 1998, pp. 81-92, 1998.
Symbolic A*.

@ Stefan Edelkamp.
Symbolic Pattern Databases in Heuristic Search Planning.
Proc. AIPS 2002, pp. 274-283, 2002.
Symbolic PDB heuristics.

Summary
ooooe

Literature IlI

] Alvaro Torralba, Carlos Linares Lépez, and Daniel Borrajo.
Symbolic Merge-and-Shrink for Cost-Optimal Planning.
Proc. IJCAI 2013, pp. 2394-2400, 2013.

Symbolic merge-and-shrink heuristics.

@ Alvaro Torralba.
Symbolic Search and Abstraction Heuristics for Cost-Optimal
Planning.
PhD Thesis, 2015.
Aggregation strategies for transition relations and good
overview of state of the art.

	Introduction
	Symbolic Uniform-Cost Search
	Symbolic A*
	Discussion
	Summary

