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Introduction

Previous chapter: Symbolic breadth-first search

Optimal plans only guaranteed for unit-cost tasks
(= all operators same cost)

Optimal planning in explicit-state forward search:

(uninformed) uniform-cost search
(informed) A∗ search
. . .

Analogous algorithms for symbolic (BDD-based) search?
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Symbolic Uniform-Cost Search
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Cost-separated Transition Relations

Previously: one transition relation TV (O) for all operators

Now: several transition relations for operators of same cost

Set T of pairs (T , c), where T is a transition relation for
one/some/all operators of cost c

All operators must be covered (and nothing else):⋃
(T ,c)∈T r(T ) = r(TV (O))

The cost must be correct:
For (T , c ′) ∈ T : if a ∈ r(T ) then a |=

∨
o∈O:cost(o)=c′ τV (o)

Many possibilities to split up TV (O) (discussed later)
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Image Computation

The apply function (previous chapter) computes the set of
states S ′ that can be reached from a set of states S by
applying one operator.

This is called the image of S wrt. transition relation TV (O).

Now: image computation for arbitrary transition relations.

def image(B, T ):
B := bdd-intersection(B,T )
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

Exactly like apply but gets transition relation as argument.
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Symbolic Uniform-Cost Search (Positive Operator Costs)

def symbolic-uniform-cost(V , I , O, γ):
goal := build-BDD(γ)
T := make-transition-relations(V ,O)
open0 := bdd-state(I )
while ∃g : openg 6= 0:

g := min{g | openg 6= 0}
closedg := openg
if bdd-intersection(openg , goal) 6= 0:

return construct-plan(I , O, goal, closed∗, g)
for all (T , c) ∈ T :

openg+c := bdd-union(openg+c ,

image(openg ,T ))
openg := 0

return unsolvable
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Pre-image Computation

The image of S wrt. transition relation T computes the set of
states that can be reached from S by applying a transition
represented by T .

The pre-image of S wrt. T is the set of states from which we
can reach S by applying a transition represented by T .

def pre-image(B, T ):
for each v ∈ V :

B := bdd-rename(B, v , v ′)
B := bdd-intersection(B,T )
for each v ∈ V :

B := bdd-forget(B, v ′)
return B
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Plan Extraction (Positive Operator Costs)

def construct-plan(I , O, goal, closed∗, g):
cut := bdd-intersection(goal, closedg )
init := bdd-state(I )
π := 〈〉
while bdd-intersection(cut, init) = 0:

for o ∈ O:
pre := pre-image(cut, τV (o))
if c := bdd-intersection(pre, closedg−cost(o)) 6= 0:

cut := c
g := g − cost(o)
π := 〈o〉π
break

return π
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Zero-cost Operators

What is the problem with zero-cost operators?

Search: could re-open openg after it was moved to closedg ,
possibly running into an infinite loop
→ Apply all zero-cost operators before closing

Plan extraction: could loop in zero-cost cycles
→ special treatment
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Breadth-first Exploration with Zero-cost Operators

def bfs-zero(B, g , T , goal):
i := 0
closedg ,i := B
while B 6= 0 and bdd-intersection(B, goal) = 0:

B ′ := 0
for (T , c) ∈ T , c = 0:

B ′ := bdd-union(B ′, image(B,T ))
B := bdd-intersection(B ′, bdd-complement(closedg ,i ))
i := i + 1
closedg ,i := bdd-union(B, closedg ,i−1)

return closedg ,i
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Symbolic Uniform-Cost Search

def symbolic-uniform-cost(V , I , O, γ):
goal := build-BDD(γ)
T := make-transition-relations(V ,O)
open0 := bdd-state(I )
while ∃g : openg 6= 0:

g := min{g | openg 6= 0}
openg := bfs-zero(openg , g , T , goal)
closedg := openg
if bdd-intersection(openg , goal) 6= 0:

return construct-plan(I , O, goal, closed∗, g)
for all (T , c) ∈ T with c > 0:

openg+c := bdd-union(openg+c ,

image(openg ,T ))
openg := 0

return unsolvable
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Plan Extraction with Zero-cost Operators

Needs all closed sets form bfs-zero and symbolic-uniform-cost.

def construct-plan(I , O, goal, closed∗,∗, g):
cut := bdd-intersection(goal, closedg )
init := bdd-state(I ); π := 〈〉
while bdd-intersection(cut, init) = 0:

cut, π := get-to-bfs-level-0(cut, g , closedg ,∗, π,O)
if g = 0:

return π
for o ∈ O with cost(o) > 0:

pre := pre-image(cut, τV (o))
if c := bdd-intersection(pre, closedg−cost(o)) 6= 0:

cut := c ; π := 〈o〉π
g := g − cost(o)
break

return π
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Plan Extraction: Zero-Cost Plan Fragment

def get-to-bfs-level-0(cut, g , closedg ,∗, π,O):
level := 0
while bdd-intersection(cut, closedg ,level) = 0:

level := level + 1
while level 6= 0:

for o ∈ O with cost(o) = 0:
pre := pre-image(cut, τV (o))
if c := bdd-intersection(pre, closedg ,level−1) 6= 0:

cut := c
level := level− 1
π := 〈o〉π
break

return cut, π
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Pruning of Closed States

In explicit-state uniform-cost search, we never
re-expand closed states.

We can easily introduce such pruning in
symbolic uniform-cost search.
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Uniform-Cost Search with Pruning of Closed States

def symbolic-uniform-cost(V , I , O, γ):
goal := build-BDD(γ)
T := make-transition-relations(V ,O)
open0 := bdd-state(I )
while ∃g : openg 6= 0:

g := min{g | openg 6= 0}
openg := bfs-zero(openg , g , T , goal, closed∗)
closedg := openg
if bdd-intersection(openg , goal) 6= 0:

return construct-plan(I , O, goal, closed∗, g)
for all (T , c) ∈ T with c > 0:

openg+c := bdd-union(openg+c ,

image(openg ,T ))
openg := 0

return unsolvable
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bfs-zero with Pruning of Closed States

def bfs-zero(B, g , T , goal, prune):
for P ∈ prune:

B := bdd-intersection(B, bdd-complement(P))
i := 0
closedg ,i := B
while B 6= 0 and bdd-intersection(B, goal) = 0:

B ′ := 0
for (T , c) ∈ T , c = 0:

B ′ := bdd-union(B ′, image(B,T ))
B := bdd-intersection(B ′, bdd-complement(closedg ,i ))
for P ∈ prune:

B := bdd-intersection(B, bdd-complement(P))
i := i + 1
closedg ,i := bdd-union(B, closedg ,i−1)

return closedg ,i
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Symbolic A∗
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Symbolic A∗

Difference between explicit-state uniform-cost search and A∗:
heuristic to guide search

f = g + h

Analogously in symbolic search

Heuristic given as set heur of BDDs heurh
for each heuristic estimate h
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Symbolic A∗ (with Consistent Heuristic)

def symbolic-AStar(V , I , O, γ, heur):
goal := build-BDD(γ)
T := make-transition-relations(V ,O)
open0,h(I ) := bdd-state(I )
while ∃g , h : openg ,h 6= 0:

f := min{f | ∃g , h : openg ,h 6= 0, f = g + h}
g := min{g | ∃h : openg ,h 6= 0, f = g + h}
openg ,∗ := expand0(open∗,∗, g , h, T , goal, heur, closed∗)
closedg := bdd-union(closedg , openg ,h)
if bdd-intersection(openg ,h, goal) 6= 0:

return construct-plan(I , O, goal, closed∗, g)
open∗,∗ := expand>0(open∗,∗, g , h, T , heur)
openg ,h := 0

return unsolvable

For performance it is important to expand the minimum g value.



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Symbolic A∗ (with Consistent Heuristic)

def symbolic-AStar(V , I , O, γ, heur):
goal := build-BDD(γ)
T := make-transition-relations(V ,O)
open0,h(I ) := bdd-state(I )
while ∃g , h : openg ,h 6= 0:

f := min{f | ∃g , h : openg ,h 6= 0, f = g + h}
g := min{g | ∃h : openg ,h 6= 0, f = g + h}
openg ,∗ := expand0(open∗,∗, g , h, T , goal, heur, closed∗)
closedg := bdd-union(closedg , openg ,h)
if bdd-intersection(openg ,h, goal) 6= 0:

return construct-plan(I , O, goal, closed∗, g)
open∗,∗ := expand>0(open∗,∗, g , h, T , heur)
openg ,h := 0

return unsolvable

For performance it is important to expand the minimum g value.
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Expand States and Update Open Lists

def expand0(open∗,∗, g , h, T , goal, heur, prune):
B := bfs-zero(openg ,h, (g , h), T , goal, prune)
for heurh′ ∈ heur, h ≤ h′ <∞:

B ′ := bdd-intersection(heurh′ , open-zero)
openg ,h′ := bdd-union(openg ,h′ ,B

′)
return openg ,∗

def expand>0(open∗,∗, g , h, T , heur):
for all (T , c) ∈ T , c > 0:

B := image(openg ,h,T )
for heurh′ ∈ heur, h − c ≤ h′ <∞:

B ′ := bdd-intersection(heurh′ , open-zero)
openg+c,h′ := bdd-union(openg+c,h′ ,B

′)
return open∗,∗
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Heuristics

How can we generate symbolic heuristics?

Symbolic Pattern Databases

Uniform-cost search can easily be adapted to regression search.
Can search backwards in abstract transition systems
BDD for closed states with (backwards-) g -value i
is heuristic BDD for h = i .

Merge-and-Shrink Abstractions

Algebraic Decision Diagrams are like BDDs but sink nodes
are labeled with arbitrary numbers.
Can map states to numbers.
Cascading tables of merge-and-shrink heuristics with linear
merge strategy can efficiently be transformed into an ADD.
Result can be used in symbolic search instead of BDD set.
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Discussion
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Importance of Variable Ordering

For good performance, we need a good variable ordering.

Variables that refer to the same state variable before and after
operator application (v and v ′) should be neighbors in the
transition relation BDD.

This is important for the performance of BDD-rename in the
image and pre-image computation.
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Transition Relations in T

We only required that all operators are represented
by some (T , c) ∈ T and that the costs are correct.

Extreme cases:

One element (τV (o), cost(o)) for each operator o
Only one element for each operator cost,
covering all operators of that cost.

Trade-off:

Large number of entries leads to large number
of image computations.
Size of T can grow exponentially with number
of covered operators.

There exist different aggregation strategies.
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Performance

In symbolic planning, blind search is often better than
informed search.

Practical implementations also perform regression or
bidirectional search.

This is only a minor modification of uniform-cost search.
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Summary
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Summary

Symbolic search operates on sets of states instead of
individual states as in explicit-state search.

State sets and transition relations can be represented
as BDDs.

A good variable ordering and an efficient image computation
are crucial for performance.
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Álvaro Torralba.
Symbolic Search and Abstraction Heuristics for Cost-Optimal
Planning.
PhD Thesis, 2015.
Aggregation strategies for transition relations and good
overview of state of the art.


	Introduction
	Symbolic Uniform-Cost Search
	Symbolic A*
	Discussion
	Summary

