
Planning and Optimization
E3. Symbolic Search: Uniform-cost and A∗ search

Malte Helmert and Gabriele Röger

Universität Basel

December 19, 2016



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Introduction



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Introduction

Previous chapter: Symbolic breadth-first search

Optimal plans only guaranteed for unit-cost tasks
(= all operators same cost)

Optimal planning in explicit-state forward search:

(uninformed) uniform-cost search
(informed) A∗ search
. . .

Analogous algorithms for symbolic (BDD-based) search?



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Symbolic Uniform-Cost Search



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Cost-separated Transition Relations

Previously: one transition relation TV (O) for all operators

Now: several transition relations for operators of same cost

Set T of pairs (T , c), where T is a transition relation for
one/some/all operators of cost c

All operators must be covered (and nothing else):⋃
(T ,c)∈T r(T ) = r(TV (O))

The cost must be correct:
For (T , c ′) ∈ T : if a ∈ r(T ) then a |=

∨
o∈O:cost(o)=c′ τV (o)

Many possibilities to split up TV (O) (discussed later)



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Image Computation

The apply function (previous chapter) computes the set of
states S ′ that can be reached from a set of states S by
applying one operator.

This is called the image of S wrt. transition relation TV (O).

Now: image computation for arbitrary transition relations.

def image(B, T ):
B := bdd-intersection(B,T )
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

Exactly like apply but gets transition relation as argument.



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Symbolic Uniform-Cost Search (Positive Operator Costs)

def symbolic-uniform-cost(V , I , O, γ):
goal := build-BDD(γ)
T := make-transition-relations(V ,O)
open0 := bdd-state(I )
while ∃g : openg 6= 0:

g := min{g | openg 6= 0}
closedg := openg
if bdd-intersection(openg , goal) 6= 0:

return construct-plan(I , O, goal, closed∗, g)
for all (T , c) ∈ T :

openg+c := bdd-union(openg+c ,

image(openg ,T ))
openg := 0

return unsolvable



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Pre-image Computation

The image of S wrt. transition relation T computes the set of
states that can be reached from S by applying a transition
represented by T .

The pre-image of S wrt. T is the set of states from which we
can reach S by applying a transition represented by T .

def pre-image(B, T ):
for each v ∈ V :

B := bdd-rename(B, v , v ′)
B := bdd-intersection(B,T )
for each v ∈ V :

B := bdd-forget(B, v ′)
return B



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Plan Extraction (Positive Operator Costs)

def construct-plan(I , O, goal, closed∗, g):
cut := bdd-intersection(goal, closedg )
init := bdd-state(I )
π := 〈〉
while bdd-intersection(cut, init) = 0:

for o ∈ O:
pre := pre-image(cut, τV (o))
if c := bdd-intersection(pre, closedg−cost(o)) 6= 0:

cut := c
g := g − cost(o)
π := 〈o〉π
break

return π



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Zero-cost Operators

What is the problem with zero-cost operators?

Search: could re-open openg after it was moved to closedg ,
possibly running into an infinite loop
→ Apply all zero-cost operators before closing

Plan extraction: could loop in zero-cost cycles
→ special treatment



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Breadth-first Exploration with Zero-cost Operators

def bfs-zero(B, g , T , goal):
i := 0
closedg ,i := B
while B 6= 0 and bdd-intersection(B, goal) = 0:

B ′ := 0
for (T , c) ∈ T , c = 0:

B ′ := bdd-union(B ′, image(B,T ))
B := bdd-intersection(B ′, bdd-complement(closedg ,i ))
i := i + 1
closedg ,i := bdd-union(B, closedg ,i−1)

return closedg ,i



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Symbolic Uniform-Cost Search

def symbolic-uniform-cost(V , I , O, γ):
goal := build-BDD(γ)
T := make-transition-relations(V ,O)
open0 := bdd-state(I )
while ∃g : openg 6= 0:

g := min{g | openg 6= 0}
openg := bfs-zero(openg , g , T , goal)
closedg := openg
if bdd-intersection(openg , goal) 6= 0:

return construct-plan(I , O, goal, closed∗, g)
for all (T , c) ∈ T with c > 0:

openg+c := bdd-union(openg+c ,

image(openg ,T ))
openg := 0

return unsolvable



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Plan Extraction with Zero-cost Operators

Needs all closed sets form bfs-zero and symbolic-uniform-cost.

def construct-plan(I , O, goal, closed∗,∗, g):
cut := bdd-intersection(goal, closedg )
init := bdd-state(I ); π := 〈〉
while bdd-intersection(cut, init) = 0:

cut, π := get-to-bfs-level-0(cut, g , closedg ,∗, π,O)
if g = 0:

return π
for o ∈ O with cost(o) > 0:

pre := pre-image(cut, τV (o))
if c := bdd-intersection(pre, closedg−cost(o)) 6= 0:

cut := c ; π := 〈o〉π
g := g − cost(o)
break

return π



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Plan Extraction: Zero-Cost Plan Fragment

def get-to-bfs-level-0(cut, g , closedg ,∗, π,O):
level := 0
while bdd-intersection(cut, closedg ,level) = 0:

level := level + 1
while level 6= 0:

for o ∈ O with cost(o) = 0:
pre := pre-image(cut, τV (o))
if c := bdd-intersection(pre, closedg ,level−1) 6= 0:

cut := c
level := level− 1
π := 〈o〉π
break

return cut, π



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Pruning of Closed States

In explicit-state uniform-cost search, we never
re-expand closed states.

We can easily introduce such pruning in
symbolic uniform-cost search.



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Uniform-Cost Search with Pruning of Closed States

def symbolic-uniform-cost(V , I , O, γ):
goal := build-BDD(γ)
T := make-transition-relations(V ,O)
open0 := bdd-state(I )
while ∃g : openg 6= 0:

g := min{g | openg 6= 0}
openg := bfs-zero(openg , g , T , goal, closed∗)
closedg := openg
if bdd-intersection(openg , goal) 6= 0:

return construct-plan(I , O, goal, closed∗, g)
for all (T , c) ∈ T with c > 0:

openg+c := bdd-union(openg+c ,

image(openg ,T ))
openg := 0

return unsolvable



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

bfs-zero with Pruning of Closed States

def bfs-zero(B, g , T , goal, prune):
for P ∈ prune:

B := bdd-intersection(B, bdd-complement(P))
i := 0
closedg ,i := B
while B 6= 0 and bdd-intersection(B, goal) = 0:

B ′ := 0
for (T , c) ∈ T , c = 0:

B ′ := bdd-union(B ′, image(B,T ))
B := bdd-intersection(B ′, bdd-complement(closedg ,i ))
for P ∈ prune:

B := bdd-intersection(B, bdd-complement(P))
i := i + 1
closedg ,i := bdd-union(B, closedg ,i−1)

return closedg ,i



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Symbolic A∗



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Symbolic A∗

Difference between explicit-state uniform-cost search and A∗:
heuristic to guide search

f = g + h

Analogously in symbolic search

Heuristic given as set heur of BDDs heurh
for each heuristic estimate h



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Symbolic A∗ (with Consistent Heuristic)

def symbolic-AStar(V , I , O, γ, heur):
goal := build-BDD(γ)
T := make-transition-relations(V ,O)
open0,h(I ) := bdd-state(I )
while ∃g , h : openg ,h 6= 0:

f := min{f | ∃g , h : openg ,h 6= 0, f = g + h}
g := min{g | ∃h : openg ,h 6= 0, f = g + h}
openg ,∗ := expand0(open∗,∗, g , h, T , goal, heur, closed∗)
closedg := bdd-union(closedg , openg ,h)
if bdd-intersection(openg ,h, goal) 6= 0:

return construct-plan(I , O, goal, closed∗, g)
open∗,∗ := expand>0(open∗,∗, g , h, T , heur)
openg ,h := 0

return unsolvable

For performance it is important to expand the minimum g value.



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Symbolic A∗ (with Consistent Heuristic)

def symbolic-AStar(V , I , O, γ, heur):
goal := build-BDD(γ)
T := make-transition-relations(V ,O)
open0,h(I ) := bdd-state(I )
while ∃g , h : openg ,h 6= 0:

f := min{f | ∃g , h : openg ,h 6= 0, f = g + h}
g := min{g | ∃h : openg ,h 6= 0, f = g + h}
openg ,∗ := expand0(open∗,∗, g , h, T , goal, heur, closed∗)
closedg := bdd-union(closedg , openg ,h)
if bdd-intersection(openg ,h, goal) 6= 0:

return construct-plan(I , O, goal, closed∗, g)
open∗,∗ := expand>0(open∗,∗, g , h, T , heur)
openg ,h := 0

return unsolvable

For performance it is important to expand the minimum g value.



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Expand States and Update Open Lists

def expand0(open∗,∗, g , h, T , goal, heur, prune):
B := bfs-zero(openg ,h, (g , h), T , goal, prune)
for heurh′ ∈ heur, h ≤ h′ <∞:

B ′ := bdd-intersection(heurh′ , open-zero)
openg ,h′ := bdd-union(openg ,h′ ,B

′)
return openg ,∗

def expand>0(open∗,∗, g , h, T , heur):
for all (T , c) ∈ T , c > 0:

B := image(openg ,h,T )
for heurh′ ∈ heur, h − c ≤ h′ <∞:

B ′ := bdd-intersection(heurh′ , open-zero)
openg+c,h′ := bdd-union(openg+c,h′ ,B

′)
return open∗,∗



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Heuristics

How can we generate symbolic heuristics?

Symbolic Pattern Databases

Uniform-cost search can easily be adapted to regression search.
Can search backwards in abstract transition systems
BDD for closed states with (backwards-) g -value i
is heuristic BDD for h = i .

Merge-and-Shrink Abstractions

Algebraic Decision Diagrams are like BDDs but sink nodes
are labeled with arbitrary numbers.
Can map states to numbers.
Cascading tables of merge-and-shrink heuristics with linear
merge strategy can efficiently be transformed into an ADD.
Result can be used in symbolic search instead of BDD set.



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Discussion



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Importance of Variable Ordering

For good performance, we need a good variable ordering.

Variables that refer to the same state variable before and after
operator application (v and v ′) should be neighbors in the
transition relation BDD.

This is important for the performance of BDD-rename in the
image and pre-image computation.



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Transition Relations in T

We only required that all operators are represented
by some (T , c) ∈ T and that the costs are correct.

Extreme cases:

One element (τV (o), cost(o)) for each operator o
Only one element for each operator cost,
covering all operators of that cost.

Trade-off:

Large number of entries leads to large number
of image computations.
Size of T can grow exponentially with number
of covered operators.

There exist different aggregation strategies.



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Performance

In symbolic planning, blind search is often better than
informed search.

Practical implementations also perform regression or
bidirectional search.

This is only a minor modification of uniform-cost search.



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Summary



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Summary

Symbolic search operates on sets of states instead of
individual states as in explicit-state search.

State sets and transition relations can be represented
as BDDs.

A good variable ordering and an efficient image computation
are crucial for performance.



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Literature I

Randal E. Bryant.
Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers 35.8, pp. 677–691, 1986.
Reduced ordered BDDs.

Kenneth L. McMillan.
Symbolic Model Checking.
PhD Thesis, 1993.
Symbolic search with BDDs.



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Literature II

Stefan Edelkamp and Frank Reffel.
OBDDs in Heuristic Search.
Proc. KI 1998, pp. 81–92, 1998.
Symbolic A∗.

Stefan Edelkamp.
Symbolic Pattern Databases in Heuristic Search Planning.
Proc. AIPS 2002, pp. 274–283, 2002.
Symbolic PDB heuristics.



Introduction Symbolic Uniform-Cost Search Symbolic A∗ Discussion Summary

Literature III

Álvaro Torralba, Carlos Linares López, and Daniel Borrajo.
Symbolic Merge-and-Shrink for Cost-Optimal Planning.
Proc. IJCAI 2013, pp. 2394–2400, 2013.
Symbolic merge-and-shrink heuristics.

Álvaro Torralba.
Symbolic Search and Abstraction Heuristics for Cost-Optimal
Planning.
PhD Thesis, 2015.
Aggregation strategies for transition relations and good
overview of state of the art.


	Introduction
	Symbolic Uniform-Cost Search
	Symbolic A*
	Discussion
	Summary

