

Planning and Optimization

E2. Symbolic Search: BDD Operations and Breadth-First Search

Malte Helmert and Gabriele Röger

Universität Basel

December 15, 2016

BDD Operations

Reminder: BDD Implementation – Data Structures

Data Structures

- Every BDD (including sub-BDDs) B is represented by a single natural number $\text{id}(B)$ called its **ID**.
The zero BDD has ID -2 , the one BDD ID -1 .
- There are three global vectors to represent the decision variable, the 0- and the 1-successor of non-sink BDDs:
- There is a global hash table lookup which maps, for each ID $i \geq 0$ representing a BDD in use, the triple $\langle \text{var}[i], \text{low}[i], \text{high}[i] \rangle$ to i .

BDD Operations: Notations

For convenience, we introduce some additional notations:

- We define $\mathbf{0} := \text{zero}()$, $\mathbf{1} := \text{one}()$.
- We write var , low , high as attributes:
 - $B.\text{var}$ for $\text{var}[B]$
 - $B.\text{low}$ for $\text{low}[B]$
 - $B.\text{high}$ for $\text{high}[B]$

Essential vs. Derived BDD Operations

We distinguish between

- **essential BDD operations**, which are implemented directly on top of `zero`, `one` and `bdd`, and
- **derived BDD operations**, which are implemented in terms of the essential operations.

Essential BDD Operations

We study the following essential operations:

- `bdd-includes(B, s)`: Test $s \in r(B)$.
- `bdd-equals(B, B')`: Test $r(B) = r(B')$.
- `bdd-atom(v)`: Build BDD representing $\{s \mid s(v) = 1\}$.
- `bdd-state(s)`: Build BDD representing $\{s\}$.
- `bdd-union(B, B')`: Build BDD representing $r(B) \cup r(B')$.
- `bdd-complement(B)`: Build BDD representing $\overline{r(B)}$.
- `bdd-forget(B, v)`: Described later.

Essential Operations: Memoization

- The essential functions are all defined recursively and are free of side effects.
- We assume (without explicit mention in the pseudo-code) that they all use **dynamic programming** (memoization):
 - Every **return** statement stores the arguments and result in a memo hash table.
 - Whenever a function is invoked, the memo is checked if the same call was made previously. If so, the result from the memo is taken to avoid recomputations.
- The memo may be cleared when the “outermost” recursive call terminates.
 - The bdd-forget function calls the bdd-union function internally. In this case, the memo for bdd-union may only be cleared once bdd-forget finishes, **not** after each bdd-union invocation finishes.

Memoization is critical for the mentioned runtime bounds.

Essential BDD Operations: bdd-includes

Test $s \in r(B)$

```
def bdd-includes(B, s):
    if B = 0:
        return false
    else if B = 1:
        return true
    else if s[B.var] = 1:
        return bdd-includes(B.high, s)
    else:
        return bdd-includes(B.low, s)
```

- Runtime: $O(k)$
- This works for partial or full valuations s , as long as all variables appearing in the BDD are defined.

Essential BDD Operations: bdd-equals

Test $r(B) = r(B')$

```
def bdd-equals(B, B'):
    return B == B'
```

- Runtime: $O(1)$

Essential BDD Operations: bdd-atom

Build BDD representing $\{s \mid s(v) = 1\}$

```
def bdd-atom(v):  
    return bdd(v, 0, 1)
```

- Runtime: $O(1)$

Essential BDD Operations: bdd-state

Build BDD representing $\{s\}$

```
def bdd-state(s):
    B := 1
    for each variable v of s, in reverse variable order:
        if s(v) = 1:
            B := bdd(v, 0, B)
        else:
            B := bdd(v, B, 0)
    return B
```

- Runtime: $O(k)$
- Works for partial or full valuations s .

Essential BDD Operations: bdd-state Example

Example ($bdd-state(\{v_1 \mapsto 1, v_3 \mapsto 0, v_4 \mapsto 1\})$)

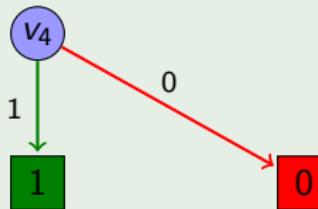
Essential BDD Operations: bdd-state Example

Example ($bdd-state(\{v_1 \mapsto 1, v_3 \mapsto 0, v_4 \mapsto 1\})$)

1

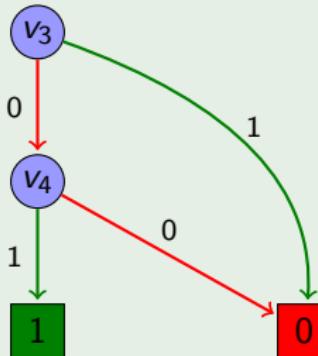
Essential BDD Operations: bdd-state Example

Example ($bdd-state(\{v_1 \mapsto 1, v_3 \mapsto 0, v_4 \mapsto 1\})$)



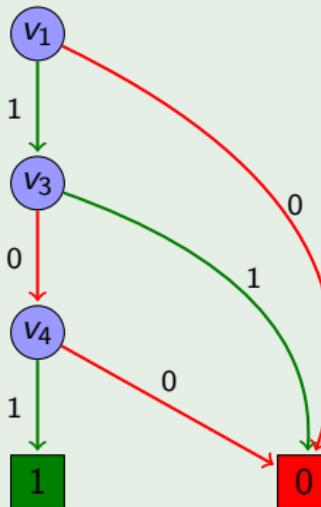
Essential BDD Operations: bdd-state Example

Example ($bdd-state(\{v_1 \mapsto 1, v_3 \mapsto 0, v_4 \mapsto 1\})$)



Essential BDD Operations: bdd-state Example

Example ($bdd-state(\{v_1 \mapsto 1, v_3 \mapsto 0, v_4 \mapsto 1\})$)



Essential BDD Operations: bdd-union

Build BDD representing $r(B) \cup r(B')$

```
def bdd-union(B, B'):
    if B = 0 and B' = 0: return 0
    else if B = 1 or B' = 1: return 1
    else if B = 0: return B'
    else if B' = 0: return B
    else if B.var < B'.var:
        return bdd(B.var, bdd-union(B.low, B'),
                    bdd-union(B.high, B'))
    else if B.var = B'.var:
        return bdd(B.var, bdd-union(B.low, B'.low),
                    bdd-union(B.high, B'.high))
    else if B.var > B'.var:
        return bdd(B'.var, bdd-union(B, B'.low),
                    bdd-union(B, B'.high))
```

- Runtime: $O(\|B\| \cdot \|B'\|)$

Essential BDD Operations: bdd-complement

Build BDD representing $\overline{r(B)}$

```
def bdd-complement(B):
    if B = 0:
        return 1
    else if B = 1:
        return 0
    else:
        return bdd(B.var, bdd-complement(B.low),
                   bdd-complement(B.high))
```

- Runtime: $O(\|B\|)$

Essential BDD Operations: bdd-forget (1)

The last essential BDD operation is a bit more unusual, but we will need it for defining the semantics of operator application.

Definition (Existential Abstraction)

Let V be a set of propositional variables, let S be a set of variable assignments over V , and let $v \in V$.

The **existential abstraction of v in S** , in symbols $\exists v.S$, is the set of valuations

$$\{s' : (V \setminus \{v\}) \rightarrow \{0, 1\} \mid \exists s \in S : s' \subset s\}$$

over $V \setminus \{v\}$.

Existential abstraction is also called **forgetting**.

Essential BDD Operations: bdd-forget (2)

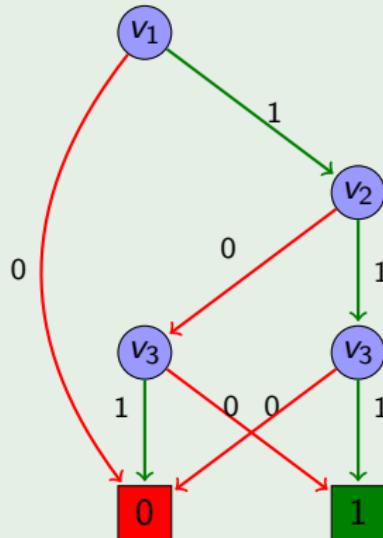
Build BDD representing $\exists v. r(B)$

```
def bdd-forget(B, v):  
    if B = 0 or B = 1 or B.var ≈ v:  
        return B  
    else if B.var ≺ v:  
        return bdd(B.var, bdd-forget(B.low, v),  
                   bdd-forget(B.high, v))  
    else:  
        return bdd-union(B.low, B.high)
```

- Runtime: $O(\|B\|^2)$

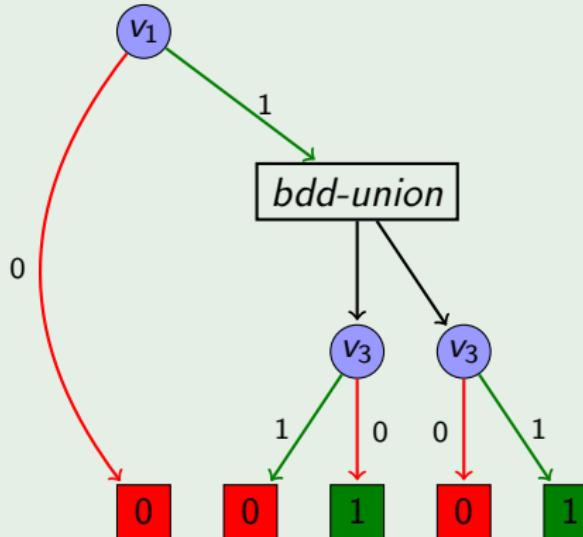
Essential BDD Operations: bdd-forget Example

Example (Forgetting v_2)



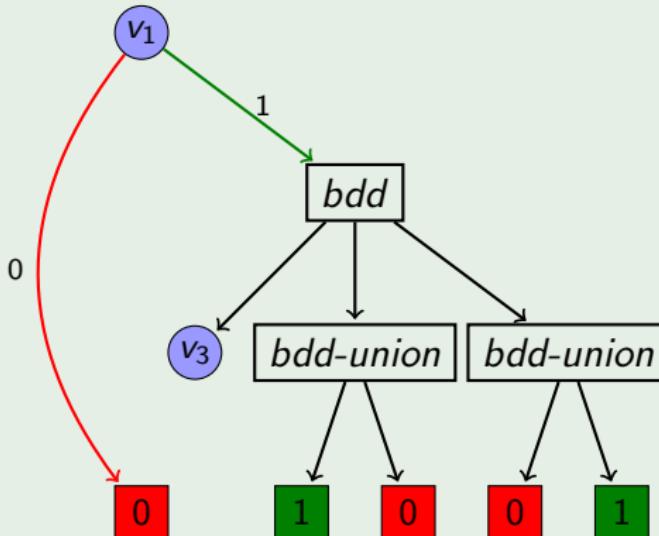
Essential BDD Operations: bdd-forget Example

Example (Forgetting v_2)



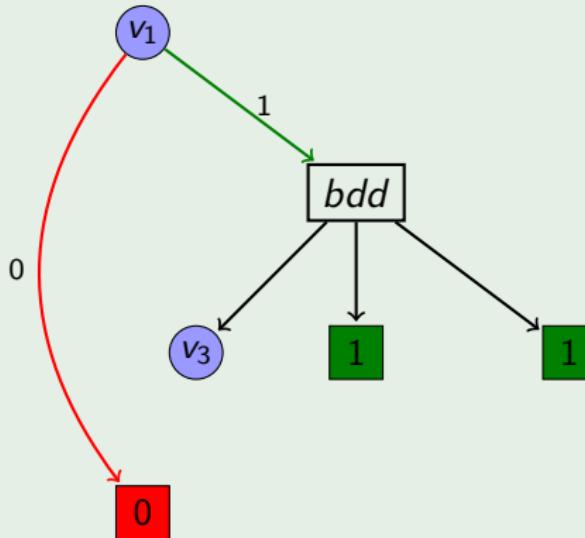
Essential BDD Operations: bdd-forget Example

Example (Forgetting v_2)



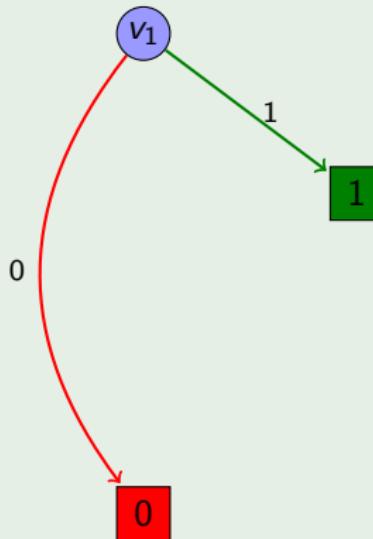
Essential BDD Operations: bdd-forget Example

Example (Forgetting v_2)



Essential BDD Operations: bdd-forget Example

Example (Forgetting v_2)



Derived BDD Operations

We study the following derived operations:

- **bdd-intersection(B, B'):**

Build BDD representing $r(B) \cap r(B')$.

- **bdd-setdifference(B, B'):**

Build BDD representing $r(B) \setminus r(B')$.

- **bdd-isempty(B):**

Test $r(B) = \emptyset$.

- **bdd-rename(B, v, v'):**

Build BDD representing $\{ \text{rename}(s, v, v') \mid s \in r(B) \}$, where $\text{rename}(s, v, v')$ is the variable assignment s with variable v renamed to v' .

- If variable v' occurs in B already, the result is undefined.

Derived Operations: bdd-intersection, bdd-setdifference

Build BDD representing $r(B) \cap r(B')$

```
def bdd-intersection(B, B'):
    not-B := bdd-complement(B)
    not-B' := bdd-complement(B')
    return bdd-complement(bdd-union(not-B, not-B'))
```

Build BDD representing $r(B) \setminus r(B')$

```
def bdd-setdifference(B, B'):
    return bdd-intersection(B, bdd-complement(B'))
```

- Runtime: $O(\|B\| \cdot \|B'\|)$
- These functions can also be easily implemented directly, following the structure of *bdd-union*.

Derived BDD Operations: bdd-isempty

Test $r(B) = \emptyset$

```
def bdd-isempty(B):  
    return bdd-equals(B, 0)
```

- Runtime: $O(1)$

Derived BDD Operations: bdd-rename

Build BDD representing $\{ \text{rename}(s, v, v') \mid s \in r(B) \}$

```
def bdd-rename(B, v, v'):
    v-and-v' := bdd-intersection(bdd-atom(v), bdd-atom(v'))
    not-v := bdd-complement(bdd-atom(v))
    not-v' := bdd-complement(bdd-atom(v'))
    not-v-and-not-v' := bdd-intersection(not-v, not-v')
    v-eq-v' := bdd-union(v-and-v', not-v-and-not-v')
    return bdd-forget(bdd-intersection(B, v-eq-v'), v)
```

- Runtime: $O(\|B\|^2)$

Derived BDD Operations: bdd-rename Remarks

- Renaming sounds like a simple operation.
- Why is it so expensive?

This is **not** because the algorithm is bad:

- Renaming **must** take at least quadratic time:
 - There exist families of BDDs B_n with k variables such that renaming v_1 to v_{k+1} increases the size of the BDD from $\Theta(n)$ to $\Theta(n^2)$.
- However, renaming is cheap in **some cases**:
 - For example, renaming to a **neighboring** unused variable (e.g. from v_i to v_{i+1}) is always possible in linear time by simply relabeling the decision variables of the BDD.
- In practice, one can usually choose a variable ordering where renaming only occurs between neighboring variables.

Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

```
def bfs-progression(V, I, O, γ):
    goal := formula-to-set(γ)
    reached0 := {I}
    i := 0
    loop:
        if reachedi ∩ goal ≠ ∅:
            return solution found
        reachedi+1 := reachedi ∪ apply(reachedi, O)
        if reachedi+1 = reachedi:
            return no solution exists
        i := i + 1
```

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

```
def bfs-progression(V, I, O, γ):
    goal := formula-to-set(γ)
    reached0 := {I}
    i := 0
    loop:
        if reachedi ∩ goal ≠ ∅:
            return solution found
        reachedi+1 := reachedi ∪ apply(reachedi, O)
        if reachedi+1 = reachedi:
            return no solution exists
        i := i + 1
```

Use *bdd-atom*, *bdd-complement*, *bdd-union*, *bdd-intersection*.

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

```
def bfs-progression(V, I, O, γ):
    goal := formula-to-set(γ)
    reached0 := {I}
    i := 0
    loop:
        if reachedi ∩ goal ≠ ∅:
            return solution found
        reachedi+1 := reachedi ∪ apply(reachedi, O)
        if reachedi+1 = reachedi:
            return no solution exists
        i := i + 1
```

Use *bdd-state*.

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

```
def bfs-progression(V, I, O, γ):
    goal := formula-to-set(γ)
    reached0 := {I}
    i := 0
    loop:
        if reachedi ∩ goal ≠ ∅:
            return solution found
        reachedi+1 := reachedi ∪ apply(reachedi, O)
        if reachedi+1 = reachedi:
            return no solution exists
        i := i + 1
```

Use *bdd-intersection*, *bdd-isempty*.

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

```
def bfs-progression(V, I, O, γ):
    goal := formula-to-set(γ)
    reached0 := {I}
    i := 0
    loop:
        if reachedi ∩ goal ≠ ∅:
            return solution found
        reachedi+1 := reachedi U apply(reachedi, O)
        if reachedi+1 = reachedi:
            return no solution exists
        i := i + 1
```

Use *bdd-union*.

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

```
def bfs-progression(V, I, O, γ):
    goal := formula-to-set(γ)
    reached0 := {I}
    i := 0
    loop:
        if reachedi ∩ goal ≠ ∅:
            return solution found
        reachedi+1 := reachedi ∪ apply(reachedi, O)
        if reachedi+1 = reachedi:
            return no solution exists
        i := i + 1
```

Use *bdd-equals*.

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

```
def bfs-progression(V, I, O, γ):
    goal := formula-to-set(γ)
    reached0 := {I}
    i := 0
    loop:
        if reachedi ∩ goal ≠ ∅:
            return solution found
        reachedi+1 := reachedi ∪ apply(reachedi, O)
        if reachedi+1 = reachedi:
            return no solution exists
        i := i + 1
```

How to do this?

The *apply* Function (1)

- We need an operation that, for a set of states *reached*; (given as a BDD) and a set of operators O , computes the set of states (as a BDD) that can be reached by applying some operator $o \in O$ in some state $s \in \text{reached}$.
- We have seen something similar already...

Translating Operators into Formulae

Definition (Operators in Propositional Logic)

Let o be an operator and V a set of state variables.

Define $\tau_V(o) := \text{pre}(o) \wedge \bigwedge_{v \in V} (\text{regr}_{\text{eff}(o)}(v) \leftrightarrow v')$.

States that o is applicable and describes when the **new value of v** , represented by v' , is **T**.

The *apply* Function (2)

- The formula $\tau_V(o)$ describes the applicability of a **single** operator o and the effect of applying o as a binary formula over variables V (describing the state in which o is applied) and V' (describing the resulting state).
- The formula $\bigvee_{o \in O} \tau_V(o)$ describes state transitions by **any** operator in O .
- We can translate this formula to a BDD (over variables $V \cup V'$) using *bdd-atom*, *bdd-complement*, *bdd-union*, *bdd-intersection*.
- The resulting BDD is called the **transition relation** of the planning task, written as $T_V(O)$.

The *apply* Function (3)

Using the transition relation, we can compute $apply(reached, O)$ as follows:

The apply function

```
def apply(reached, O):
    B :=  $T_V(O)$ 
    B := bdd-intersection(B, reached)
    for each  $v \in V$ :
        B := bdd-forget(B, v)
    for each  $v \in V$ :
        B := bdd-rename(B,  $v'$ , v)
    return B
```

The *apply* Function (3)

Using the transition relation, we can compute $apply(reached, O)$ as follows:

The apply function

```
def apply(reached, O):
    B :=  $T_V(O)$ 
    B := bdd-intersection(B, reached)
    for each  $v \in V$ :
        B := bdd-forget(B, v)
    for each  $v \in V$ :
        B := bdd-rename(B,  $v'$ , v)
    return B
```

This describes the set of **state pairs** $\langle s, s' \rangle$ where s' is a successor of s in terms of variables $V \cup V'$.

The *apply* Function (3)

Using the transition relation, we can compute *apply(reached, O)* as follows:

The apply function

```
def apply(reached, O):
    B :=  $T_V(O)$ 
    B := bdd-intersection(B, reached)
    for each  $v \in V$ :
        B := bdd-forget(B, v)
    for each  $v \in V$ :
        B := bdd-rename(B,  $v'$ , v)
    return B
```

This describes the set of state pairs $\langle s, s' \rangle$ where s' is a successor of s and $s \in \text{reached}$ in terms of variables $V \cup V'$.

The *apply* Function (3)

Using the transition relation, we can compute *apply(reached, O)* as follows:

The apply function

```
def apply(reached, O):
    B :=  $T_{V'}(O)$ 
    B := bdd-intersection(B, reached)
    for each  $v \in V$ :
        B := bdd-forget(B, v)
    for each  $v \in V$ :
        B := bdd-rename(B,  $v'$ , v)
    return B
```

This describes the set of states s' which are successors of some state $s \in \text{reached}$ in terms of variables V' .

The *apply* Function (3)

Using the transition relation, we can compute $apply(reached, O)$ as follows:

The apply function

```
def apply(reached, O):
    B :=  $T_V(O)$ 
    B := bdd-intersection(B, reached)
    for each  $v \in V$ :
        B := bdd-forget(B, v)
    for each  $v \in V$ :
        B := bdd-rename(B,  $v'$ , v)
    return B
```

This describes the set of states s' which are successors of some state $s \in reached$ in terms of variables V .

The *apply* Function (3)

Using the transition relation, we can compute $apply(reached, O)$ as follows:

The apply function

```
def apply(reached, O):
    B :=  $T_V(O)$ 
    B := bdd-intersection(B, reached)
    for each  $v \in V$ :
        B := bdd-forget(B, v)
    for each  $v \in V$ :
        B := bdd-rename(B,  $v'$ , v)
    return B
```

Thus, *apply* indeed computes the set of successors of *reached* using operators *O*.

Plan Extraction

We can construct a plan from the BDDs *reached*;
(set given as parameter *reached_{*}*):

Construct Plan

```
def construct_plan(I, O, γ, reached*, imax):
    goal := BDD for γ
    s := arbitrary state from bdd-intersection(goal, reachedimax)
    π := ⟨⟩
    for i = imax - 1 to 0:
        for o ∈ O:
            p := BDD for regro(s)
            if c := bdd-intersection(p, reachedi) ≠ 0:
                s := arbitrary state from c
                π := ⟨o⟩π
                break
    return π
```

Remarks

BDDs can be used to implement a blind breadth-first search algorithm in an efficient way.

- For good performance, we need a **good variable ordering**.
 - Variables that refer to the same state variable before and after operator application (v and v') should be **neighbors** in the transition relation BDD.
- Use **mutexes** to reformulate as a multi-valued task.
 - Use $\lceil \log_2 n \rceil$ BDD variables to represent a variable with n possible values.

Summary

Summary

- **Binary decision diagrams** are a data structure to compactly represent and manipulate sets of valuations.
- They can be used to implement a blind breadth-first search algorithm in an efficient way.