
Planning and Optimization
E2. Symbolic Search: BDD Operations and Breadth-First Search

Malte Helmert and Gabriele Röger

Universität Basel

December 15, 2016



BDD Operations Symbolic Breadth-first Search Summary

BDD Operations



BDD Operations Symbolic Breadth-first Search Summary

Reminder: BDD Implementation – Data Structures

Data Structures

Every BDD (including sub-BDDs) B is represented by a single
natural number id(B) called its ID.
The zero BDD has ID −2, the one BDD ID −1.

There are three global vectors to represent the decision
variable, the 0- and the 1-successor of non-sink BDDs:

There is a global hash table lookup which maps, for each ID
i ≥ 0 representing a BDD in use, the triple
〈var[i ], low[i ], high[i ]〉 to i .



BDD Operations Symbolic Breadth-first Search Summary

BDD Operations: Notations

For convenience, we introduce some additional notations:

We define 0 := zero(), 1 := one().

We write var, low, high as attributes:

B.var for var[B]
B.low for low[B]
B.high for high[B]



BDD Operations Symbolic Breadth-first Search Summary

Essential vs. Derived BDD Operations

We distinguish between

essential BDD operations, which are implemented directly on
top of zero, one and bdd, and

derived BDD operations, which are implemented in terms of
the essential operations.



BDD Operations Symbolic Breadth-first Search Summary

Essential BDD Operations

We study the following essential operations:

bdd-includes(B, s): Test s ∈ r(B).

bdd-equals(B, B ′): Test r(B) = r(B ′).

bdd-atom(v): Build BDD representing {s | s(v) = 1}.
bdd-state(s): Build BDD representing {s}.
bdd-union(B, B ′): Build BDD representing r(B) ∪ r(B ′).

bdd-complement(B): Build BDD representing r(B).

bdd-forget(B, v): Described later.



BDD Operations Symbolic Breadth-first Search Summary

Essential Operations: Memoization

The essential functions are all defined recursively and are free
of side effects.

We assume (without explicit mention in the pseudo-code)
that they all use dynamic programming (memoization):

Every return statement stores the arguments and result in a
memo hash table.
Whenever a function is invoked, the memo is checked if the
same call was made previously. If so, the result from the memo
is taken to avoid recomputations.

The memo may be cleared when the “outermost” recursive
call terminates.

The bdd-forget function calls the bdd-union function internally.
In this case, the memo for bdd-union may only be cleared once
bdd-forget finishes, not after each bdd-union invocation
finishes.

Memoization is critical for the mentioned runtime bounds.



BDD Operations Symbolic Breadth-first Search Summary

Essential BDD Operations: bdd-includes

Test s ∈ r(B)

def bdd-includes(B, s):
if B = 0:

return false
else if B = 1:

return true
else if s[B.var] = 1:

return bdd-includes(B.high, s)
else:

return bdd-includes(B.low, s)

Runtime: O(k)

This works for partial or full valuations s, as long as all
variables appearing in the BDD are defined.



BDD Operations Symbolic Breadth-first Search Summary

Essential BDD Operations: bdd-equals

Test r(B) = r(B ′)

def bdd-equals(B, B ′):
return B = B ′

Runtime: O(1)



BDD Operations Symbolic Breadth-first Search Summary

Essential BDD Operations: bdd-atom

Build BDD representing {s | s(v) = 1}
def bdd-atom(v):

return bdd(v , 0, 1)

Runtime: O(1)



BDD Operations Symbolic Breadth-first Search Summary

Essential BDD Operations: bdd-state

Build BDD representing {s}
def bdd-state(s):

B := 1
for each variable v of s, in reverse variable order:

if s(v) = 1:
B := bdd(v , 0,B)

else:
B := bdd(v ,B, 0)

return B

Runtime: O(k)

Works for partial or full valuations s.



BDD Operations Symbolic Breadth-first Search Summary

Essential BDD Operations: bdd-state Example

Example (bdd-state({v1 7→ 1, v3 7→ 0, v4 7→ 1}))



BDD Operations Symbolic Breadth-first Search Summary

Essential BDD Operations: bdd-state Example

Example (bdd-state({v1 7→ 1, v3 7→ 0, v4 7→ 1}))

1



BDD Operations Symbolic Breadth-first Search Summary

Essential BDD Operations: bdd-state Example

Example (bdd-state({v1 7→ 1, v3 7→ 0, v4 7→ 1}))

1

v4

0

0
1



BDD Operations Symbolic Breadth-first Search Summary

Essential BDD Operations: bdd-state Example

Example (bdd-state({v1 7→ 1, v3 7→ 0, v4 7→ 1}))

1

v4

0

0
1

v3

0
1



BDD Operations Symbolic Breadth-first Search Summary

Essential BDD Operations: bdd-state Example

Example (bdd-state({v1 7→ 1, v3 7→ 0, v4 7→ 1}))

1

v4

0

0
1

v3

0
1

v1

0

1



BDD Operations Symbolic Breadth-first Search Summary

Essential BDD Operations: bdd-union

Build BDD representing r(B) ∪ r(B ′)

def bdd-union(B, B ′):
if B = 0 and B ′ = 0: return 0
else if B = 1 or B ′ = 1: return 1
else if B = 0: return B ′

else if B ′ = 0: return B
else if B.var < B ′.var:

return bdd(B.var, bdd-union(B.low,B ′),
bdd-union(B.high,B ′))

else if B.var = B ′.var:
return bdd(B.var, bdd-union(B.low,B ′.low),

bdd-union(B.high,B ′.high))
else if B.var > B ′.var:

return bdd(B ′.var, bdd-union(B,B ′.low),
bdd-union(B,B ′.high))

Runtime: O(‖B‖ · ‖B ′‖)



BDD Operations Symbolic Breadth-first Search Summary

Essential BDD Operations: bdd-complement

Build BDD representing r(B)

def bdd-complement(B):
if B = 0:

return 1
else if B = 1:

return 0
else:

return bdd(B.var, bdd-complement(B.low),
bdd-complement(B.high))

Runtime: O(‖B‖)



BDD Operations Symbolic Breadth-first Search Summary

Essential BDD Operations: bdd-forget (1)

The last essential BDD operation is a bit more unusual, but we will
need it for defining the semantics of operator application.

Definition (Existential Abstraction)

Let V be a set of propositional variables, let S be a set of variable
assignments over V , and let v ∈ V .
The existential abstraction of v in S , in symbols ∃v .S ,
is the set of valuations

{s ′ : (V \ {v})→ {0, 1} | ∃s ∈ S : s ′ ⊂ s}

over V \ {v}.

Existential abstraction is also called forgetting.



BDD Operations Symbolic Breadth-first Search Summary

Essential BDD Operations: bdd-forget (2)

Build BDD representing ∃v .r(B)

def bdd-forget(B, v):
if B = 0 or B = 1 or B.var � v :

return B
else if B.var ≺ v :

return bdd(B.var, bdd-forget(B.low, v),
bdd-forget(B.high, v))

else:
return bdd-union(B.low,B.high)

Runtime: O(‖B‖2)



BDD Operations Symbolic Breadth-first Search Summary

Essential BDD Operations: bdd-forget Example

Example (Forgetting v2)

0

v1

0

v2

1

v3 v3

01 0 1

0
1

1



BDD Operations Symbolic Breadth-first Search Summary

Essential BDD Operations: bdd-forget Example

Example (Forgetting v2)

0

v1

0

bdd-union

1 10 0

v3 v3

01 0 1

1



BDD Operations Symbolic Breadth-first Search Summary

Essential BDD Operations: bdd-forget Example

Example (Forgetting v2)

0

v1

0

bdd

v3 bdd-union bdd-union

1 0 0 1

1



BDD Operations Symbolic Breadth-first Search Summary

Essential BDD Operations: bdd-forget Example

Example (Forgetting v2)

0

v1

0

bdd

v3 1 1

1



BDD Operations Symbolic Breadth-first Search Summary

Essential BDD Operations: bdd-forget Example

Example (Forgetting v2)

0

v1

0

1

1



BDD Operations Symbolic Breadth-first Search Summary

Derived BDD Operations

We study the following derived operations:

bdd-intersection(B, B ′):
Build BDD representing r(B) ∩ r(B ′).

bdd-setdifference(B, B ′):
Build BDD representing r(B) \ r(B ′).

bdd-isempty(B):
Test r(B) = ∅.
bdd-rename(B, v , v ′):
Build BDD representing {rename(s, v , v ′) | s ∈ r(B) }, where
rename(s, v , v ′) is the variable assignment s with variable v
renamed to v ′.

If variable v ′ occurs in B already, the result is undefined.



BDD Operations Symbolic Breadth-first Search Summary

Derived Operations: bdd-intersection, bdd-setdifference

Build BDD representing r(B) ∩ r(B ′)

def bdd-intersection(B, B ′):
not-B := bdd-complement(B)
not-B’ := bdd-complement(B ′)
return bdd-complement(bdd-union(not-B, not-B’))

Build BDD representing r(B) \ r(B ′)

def bdd-setdifference(B, B ′):
return bdd-intersection(B, bdd-complement(B ′))

Runtime: O(‖B‖ · ‖B ′‖)
These functions can also be easily implemented directly,
following the structure of bdd-union.



BDD Operations Symbolic Breadth-first Search Summary

Derived BDD Operations: bdd-isempty

Test r(B) = ∅
def bdd-isempty(B):

return bdd-equals(B, 0)

Runtime: O(1)



BDD Operations Symbolic Breadth-first Search Summary

Derived BDD Operations: bdd-rename

Build BDD representing {rename(s, v , v ′) | s ∈ r(B) }
def bdd-rename(B, v , v ′):

v-and-v’ := bdd-intersection(bdd-atom(v), bdd-atom(v ′))
not-v := bdd-complement(bdd-atom(v))
not-v’ := bdd-complement(bdd-atom(v ′))
not-v-and-not-v’ := bdd-intersection(not-v, not-v’)
v-eq-v’ := bdd-union(v-and-v’, not-v-and-not-v’)
return bdd-forget(bdd-intersection(B, v-eq-v’), v)

Runtime: O(‖B‖2)



BDD Operations Symbolic Breadth-first Search Summary

Derived BDD Operations: bdd-rename Remarks

Renaming sounds like a simple operation.

Why is it so expensive?

This is not because the algorithm is bad:

Renaming must take at least quadratic time:

There exist families of BDDs Bn with k variables such that
renaming v1 to vk+1 increases the size of the BDD from Θ(n)
to Θ(n2).

However, renaming is cheap in some cases:

For example, renaming to a neighboring unused variable (e.g.
from vi to vi+1) is always possible in linear time by simply
relabeling the decision variables of the BDD.

In practice, one can usually choose a variable ordering where
renaming only occurs between neighboring variables.



BDD Operations Symbolic Breadth-first Search Summary

Symbolic Breadth-first Search



BDD Operations Symbolic Breadth-first Search Summary

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal := formula-to-set(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal 6= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1



BDD Operations Symbolic Breadth-first Search Summary

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal := formula-to-set(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal 6= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-atom, bdd-complement, bdd-union, bdd-intersection.



BDD Operations Symbolic Breadth-first Search Summary

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal := formula-to-set(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal 6= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-state.



BDD Operations Symbolic Breadth-first Search Summary

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal := formula-to-set(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal 6= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-intersection, bdd-isempty.



BDD Operations Symbolic Breadth-first Search Summary

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal := formula-to-set(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal 6= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-union.



BDD Operations Symbolic Breadth-first Search Summary

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal := formula-to-set(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal 6= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-equals.



BDD Operations Symbolic Breadth-first Search Summary

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal := formula-to-set(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal 6= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

How to do this?



BDD Operations Symbolic Breadth-first Search Summary

The apply Function (1)

We need an operation that, for a set of states reachedi
(given as a BDD) and a set of operators O, computes the set
of states (as a BDD) that can be reached by applying some
operator o ∈ O in some state s ∈ reached.

We have seen something similar already. . .



BDD Operations Symbolic Breadth-first Search Summary

Translating Operators into Formulae

Definition (Operators in Propositional Logic)

Let o be an operator and V a set of state variables.
Define τV (o) := pre(o) ∧

∧
v∈V (regreff(o)(v)↔ v ′).

States that o is applicable and describes when the new value of v ,
represented by v ′, is T.



BDD Operations Symbolic Breadth-first Search Summary

The apply Function (2)

The formula τV (o) describes the applicability of a single
operator o and the effect of applying o as a binary formula
over variables V (describing the state in which o is applied)
and V ′ (describing the resulting state).

The formula
∨

o∈O τV (o) describes state transitions by any
operator in O.

We can translate this formula to a BDD (over variables
V ∪ V ′) using bdd-atom, bdd-complement, bdd-union,
bdd-intersection.

The resulting BDD is called the transition relation of the
planning task, written as TV (O).



BDD Operations Symbolic Breadth-first Search Summary

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B



BDD Operations Symbolic Breadth-first Search Summary

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

This describes the set of state pairs 〈s, s ′〉 where s ′ is a successor
of s in terms of variables V ∪ V ′.



BDD Operations Symbolic Breadth-first Search Summary

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

This describes the set of state pairs 〈s, s ′〉 where s ′ is a successor
of s and s ∈ reached in terms of variables V ∪ V ′.



BDD Operations Symbolic Breadth-first Search Summary

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

This describes the set of states s ′ which are successors
of some state s ∈ reached in terms of variables V ′.



BDD Operations Symbolic Breadth-first Search Summary

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

This describes the set of states s ′ which are successors
of some state s ∈ reached in terms of variables V .



BDD Operations Symbolic Breadth-first Search Summary

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

Thus, apply indeed computes the set of successors of reached
using operators O.



BDD Operations Symbolic Breadth-first Search Summary

Plan Extraction

We can construct a plan from the BDDs reachedi
(set given as parameter reached∗):

Construct Plan

def construct plan(I , O, γ, reached∗, imax):
goal := BDD for γ
s := arbitrary state from bdd-intersection(goal, reached imax)
π := 〈〉
for i = imax − 1 to 0:

for o ∈ O:
p := BDD for regro(s)
if c := bdd-intersection(p, reachedi ) 6= 0:

s := arbitrary state from c
π := 〈o〉π
break

return π



BDD Operations Symbolic Breadth-first Search Summary

Remarks

BDDs can be used to implement a blind breadth-first search
algorithm in an efficient way.

For good performance, we need a good variable ordering.

Variables that refer to the same state variable before and after
operator application (v and v ′) should be neighbors in the
transition relation BDD.

Use mutexes to reformulate as a multi-valued task.

Use dlog2 ne BDD variables to represent a variable with n
possible values.



BDD Operations Symbolic Breadth-first Search Summary

Summary



BDD Operations Symbolic Breadth-first Search Summary

Summary

Binary decision diagrams are a data structure to compactly
represent and manipulate sets of valuations.

They can be used to implement a blind breadth-first search
algorithm in an efficient way.


	BDD Operations
	Symbolic Breadth-first Search
	Summary

