
Planning and Optimization
E1. Symbolic Search: BDDs

Malte Helmert and Gabriele Röger

Universität Basel

December 15, 2016

Motivation Binary Decision Diagrams BDD Implementation Summary

Motivation

Motivation Binary Decision Diagrams BDD Implementation Summary

Dealing with Large State Spaces

One way to explore very large state spaces is to use selective
exploration methods (such as heuristic search) that only
explore a fraction of states.

Another method is to concisely represent large sets of states
and deal with large state sets at the same time.

Motivation Binary Decision Diagrams BDD Implementation Summary

Breadth-first Search with Progression and State Sets

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal := formula-to-set(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal 6= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

 If we can implement operations formula-to-set, {I}, ∩, 6= ∅, ∪,
 apply and = efficiently, this is a reasonable algorithm.

Motivation Binary Decision Diagrams BDD Implementation Summary

Formulae to Represent State Sets

We have previously considered boolean formulae as a means
of representing sets of states.

Compared to explicit representations of state sets, boolean
formulae have very nice performance characteristics.

Note: In the following, we assume that formulae are implemented
as trees, not strings, so that we can e.g. compute χ ∧ ψ from χ
and ψ in constant time.

Motivation Binary Decision Diagrams BDD Implementation Summary

Performance Characteristics
Explicit Representations vs. Formulae

Let k be the number of state variables, |S | the number of states in
S and ‖S‖ the size of the representation of S .

Sorted vector Hash table Formula

s ∈ S? O(k log |S |) O(k) O(‖S‖)
S := S ∪ {s} O(k log |S |+ |S |) O(k) O(k)
S := S \ {s} O(k log |S |+ |S |) O(k) O(k)
S ∪ S ′ O(k|S |+ k|S ′|) O(k|S |+ k|S ′|) O(1)
S ∩ S ′ O(k|S |+ k|S ′|) O(k|S |+ k|S ′|) O(1)
S \ S ′ O(k|S |+ k|S ′|) O(k|S |+ k|S ′|) O(1)

S O(k2k) O(k2k) O(1)
{s | s(v) = 1} O(k2k) O(k2k) O(1)
S = ∅? O(1) O(1) co-NP-complete
S = S ′? O(k|S |) O(k|S |) co-NP-complete
|S | O(1) O(1) #P-complete

Motivation Binary Decision Diagrams BDD Implementation Summary

Which Operations are Important?

Explicit representations such as hash tables are not suitable
because their size grows linearly with the number of
represented states.
Formulae are very efficient for some operations, but not very
well suited for other important operations needed by the
progression algorithm.

Examples: S 6= ∅?, S = S ′?

One of the sources of difficulty is that formulae allow many
different representations for a given set.

For example, all unsatisfiable formulae represent ∅.
This makes equality tests expensive.

 We are interested in canonical representations, i.e.
representations for which there is only one possible representation
for every state set.

Binary decision diagrams (BDDs) are an example of an efficient
canonical representation.

Motivation Binary Decision Diagrams BDD Implementation Summary

Performance Characteristics
Formulae vs. BDDs

Let k be the number of state variables, |S | the number of states in
S and ‖S‖ the size of the representation of S .

Formula BDD

s ∈ S? O(‖S‖) O(k)
S := S ∪ {s} O(k) O(k)
S := S \ {s} O(k) O(k)
S ∪ S ′ O(1) O(‖S‖‖S ′‖)
S ∩ S ′ O(1) O(‖S‖‖S ′‖)
S \ S ′ O(1) O(‖S‖‖S ′‖)
S O(1) O(‖S‖)
{s | s(v) = 1} O(1) O(1)
S = ∅? co-NP-complete O(1)
S = S ′? co-NP-complete O(1)
|S | #P-complete O(‖S‖)

Remark: Optimizations allow BDDs with complementation (S) in
constant time, but we will not discuss this here.

Motivation Binary Decision Diagrams BDD Implementation Summary

Binary Decision Diagrams

Motivation Binary Decision Diagrams BDD Implementation Summary

Binary Decision Diagrams: Definition

Definition (BDD)

Let V be a set of propositional variables.
A binary decision diagram (BDD) over V is a directed acyclic
graph with labeled arcs and labeled vertices satisfying the following
conditions:

There is exactly one node without incoming arcs.

All sinks (nodes without outgoing arcs) are labeled 0 or 1.

All other nodes are labeled with a variable v ∈ V and have
exactly two outgoing arcs, labeled 0 and 1.

Motivation Binary Decision Diagrams BDD Implementation Summary

BDD Example

Example

Possible BDD for (u ∧ v) ∨ w

u

v

w w

0 1 0 1

0

1

0 1

0

1

01

Motivation Binary Decision Diagrams BDD Implementation Summary

Binary Decision Diagrams: Terminology

BDD Terminology

The node without incoming arcs is called the root.

The labeling variable of an internal node is called the decision
variable of the node.

The nodes reached from node n via the arc labeled i ∈ {0, 1}
is called the i-successor of n.

The BDDs which only consist of a single sink are called the
zero BDD and one BDD, respectively.

Observation: If B is a BDD and n is a node of B, then the
subgraph induced by all nodes reachable from n is also a BDD.

This BDD is called the BDD rooted at n.

Motivation Binary Decision Diagrams BDD Implementation Summary

BDD Semantics

Testing whether a BDD Includes a Variable Assignment

def bdd-includes(B: BDD, a: variable assignment):
Set n to the root of B.
while n is not a sink:

Set v to the decision variable of n.
Set n to the a(v)-successor of n.

return true if n is labeled 1, false if it is labeled 0.

Definition (Set Represented by a BDD)

Let B be a BDD over variables V . The set represented by B, in
symbols r(B) consists of all variable assignments a : V → {0, 1}
for which bdd-includes(B, a) returns true.

Motivation Binary Decision Diagrams BDD Implementation Summary

Ordered BDDs: Motivation

In general, BDDs are not a canonical representation for sets of
valuations. Here is a simple counter-example (V = {u, v}):

Example (BDDs for u ∧ ¬v with Different Variable Order)

u

v

0 1

0

1

01

v

u

1 0

0

1

01

Both BDDs represent the same state set, namely the singleton set
{{u 7→ 1, v 7→ 0}}.

Motivation Binary Decision Diagrams BDD Implementation Summary

Ordered BDDs: Definition

As a first step towards a canonical representation, we will in
the following assume that the set of variables A is totally
ordered by some ordering ≺.

In particular, we will only use variables v1, v2, v3, . . . and
assume the ordering vi ≺ vj iff i < j .

Definition (Ordered BDD)

A BDD is ordered iff for each arc from an internal node with
decision variable u to an internal node with decision variable v , we
have u ≺ v .

Motivation Binary Decision Diagrams BDD Implementation Summary

Ordered BDDs: Example

Example (Ordered and Unordered BDD)

v1

v2

0 1

0

1

01

v2

v1

1 0

0

1

01

The left BDD is ordered, the right one is not.

Motivation Binary Decision Diagrams BDD Implementation Summary

Reduced Ordered BDDs: Are Ordered BDDs Canonical?

Example (Two equivalent BDDs that can be reduced)

v1

v2

v3 v3

0 1 0 1

0

1

0 1

0

1

01

v1

v2

v3 v3

0 1

0

1

0
1

0 1

0 1

Ordered BDDs are not canonical: Both ordered BDDs
represent the same set.

However, ordered BDDs can easily be made canonical.

Motivation Binary Decision Diagrams BDD Implementation Summary

Reduced Ordered BDDs: Reductions (1)

There are two important operations on BDDs that do not change
the set represented by it:

Definition (Isomorphism Reduction)

If the BDDs rooted at two different nodes n and n′ are isomorphic,
then all incoming arcs of n′ can be redirected to n, and all parts of
the BDD no longer reachable from the root removed.

Motivation Binary Decision Diagrams BDD Implementation Summary

Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

v1

v2

1

v3

0

0

0

1

1
v3

0

01

0

1

1

Motivation Binary Decision Diagrams BDD Implementation Summary

Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

v1

v2

1

0

1

1
v3

0

01

0

v3

0 1

0 1

Motivation Binary Decision Diagrams BDD Implementation Summary

Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

v1

v2

1

v3

0

0

0

1

1

0

1

v3

1 0

01

Motivation Binary Decision Diagrams BDD Implementation Summary

Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

v1

v2

1

v3

0

0

0

1

1

0

1

1

Motivation Binary Decision Diagrams BDD Implementation Summary

Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

v1

v2

v3

0

0

0

1

1

0

1

1 1

Motivation Binary Decision Diagrams BDD Implementation Summary

Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

v1

v2

1

v3

0

0

0

1

1

0

1

1

Motivation Binary Decision Diagrams BDD Implementation Summary

Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

v1

v2

1

v3

0

0

0

1

1

0

1

Motivation Binary Decision Diagrams BDD Implementation Summary

Reduced Ordered BDDs: Reductions (3)

There are two important operations on BDDs that do not change
the set represented by it:

Definition (Shannon Reduction)

If both outgoing arcs of an internal node n of a BDD lead to the
same node m, then n can be removed from the BDD, with all
incoming arcs of n going to m instead.

Motivation Binary Decision Diagrams BDD Implementation Summary

Reduced Ordered BDDs: Reductions (4)

Example (Shannon Reduction)

v1

v2

v3

0 1

0

1

0
1

0

v3

0 1

1

Motivation Binary Decision Diagrams BDD Implementation Summary

Reduced Ordered BDDs: Reductions (4)

Example (Shannon Reduction)

v1

v2

v3

0

0

1

0
1

0

v3

1

0 1

1

Motivation Binary Decision Diagrams BDD Implementation Summary

Reduced Ordered BDDs: Reductions (4)

Example (Shannon Reduction)

v1

v2

v3

0 1

0

1

0
1

0

1

Motivation Binary Decision Diagrams BDD Implementation Summary

Reduced Ordered BDDs: Definition

Definition (Reduced Ordered BDD)

An ordered BDD is reduced iff it does not admit any isomorphism
reduction or Shannon reduction.

Theorem (Bryant 1986)

For every state set S and a fixed variable ordering, there exists
exactly one reduced ordered BDD representing S.

Moreover, given any ordered BDD B, the equivalent reduced
ordered BDD can be computed in linear time in the size of B.

 Reduced ordered BDDs are the canonical representation
 we were looking for.
From now on, we simply say BDD for reduced ordered BDD.

Motivation Binary Decision Diagrams BDD Implementation Summary

BDD Implementation

Motivation Binary Decision Diagrams BDD Implementation Summary

Efficient BDD Implementation: Ideas

Earlier, we showed some BDD performance characteristics.

Example: S = S ′? can be tested in time O(1).

The critical idea for achieving this performance is to share
structure not only within a BDD, but also between different
BDDs.

BDD Representation

Every BDD (including sub-BDDs) B is represented by a single
natural number id(B) called its ID.

The zero BDD has ID −2.
The one BDD has ID −1.
Other BDDs have IDs ≥ 0.

The BDD operations must satisfy the following invariant:
Two BDDs with different ID are never identical.

Motivation Binary Decision Diagrams BDD Implementation Summary

Efficient BDD Implementation: Data Structures

Data Structures

There are three global vectors (dynamic arrays) to represent
information on non-sink BDDs with ID i ≥ 0:

var[i] denotes the decision variable.
low[i] denotes the ID of the 0-successor.
high[i] denotes the ID of the 1-successor.

There is some mechanism that keeps track of IDs that are
currently unused (garbage collection, reference counting).

This can be implemented without amortized overhead.

There is a global hash table lookup which maps, for each ID
i ≥ 0 representing a BDD in use, the triple
〈var[i], low[i], high[i]〉 to i .

Randomized hashing allows constant-time access in the
expected case. More sophisticated methods allow deterministic
constant-time access.

Motivation Binary Decision Diagrams BDD Implementation Summary

Efficient BDD Implementation: Data Structures Example

v1

v3

0 1

0

1

0 1

v2

v3

0 1

0

1

0 1

formula ID i var[i] low[i] high[i]
⊥ −2 – – –
> −1 – – –
v3 12 3 −2 −1

v1 ∧ v3 14 1 −2 12
¬v2 ∧ v3 17 2 12 −2

Motivation Binary Decision Diagrams BDD Implementation Summary

Efficient BDD Implementation: Data Structures Example

0

v1

v3

1

0

1

0 1

−2

0

v2

v3

1

0

1

0 1

−2

formula ID i var[i] low[i] high[i]
⊥ −2 – – –
> −1 – – –
v3 12 3 −2 −1

v1 ∧ v3 14 1 −2 12
¬v2 ∧ v3 17 2 12 −2

Motivation Binary Decision Diagrams BDD Implementation Summary

Efficient BDD Implementation: Data Structures Example

1

v1

v3

0

0

1

0 1

−2 −1

1

v2

v3

0

0

1

0 1

−2 −1

formula ID i var[i] low[i] high[i]
⊥ −2 – – –
> −1 – – –
v3 12 3 −2 −1

v1 ∧ v3 14 1 −2 12
¬v2 ∧ v3 17 2 12 −2

Motivation Binary Decision Diagrams BDD Implementation Summary

Efficient BDD Implementation: Data Structures Example

0 1

v3
0 1

v1

0

1

−2 −1

12

0 1

v3
0 1

v2
0

1

−2 −1

12

formula ID i var[i] low[i] high[i]
⊥ −2 – – –
> −1 – – –
v3 12 3 −2 −1

v1 ∧ v3 14 1 −2 12
¬v2 ∧ v3 17 2 12 −2

Motivation Binary Decision Diagrams BDD Implementation Summary

Efficient BDD Implementation: Data Structures Example

0 1

v3
0 1

v1

0

1

−2 −1

12

14

v2

v3

0 1

0

1

0 1

−2 −1

12

formula ID i var[i] low[i] high[i]
⊥ −2 – – –
> −1 – – –
v3 12 3 −2 −1

v1 ∧ v3 14 1 −2 12
¬v2 ∧ v3 17 2 12 −2

Motivation Binary Decision Diagrams BDD Implementation Summary

Efficient BDD Implementation: Data Structures Example

v1

v3

0 1

0

1

0 1

−2 −1

12

14

0 1

v3
0 1

v2
0

1

−2 −1

12

17

formula ID i var[i] low[i] high[i]
⊥ −2 – – –
> −1 – – –
v3 12 3 −2 −1

v1 ∧ v3 14 1 −2 12
¬v2 ∧ v3 17 2 12 −2

Motivation Binary Decision Diagrams BDD Implementation Summary

Efficient BDD Implementation: Data Structures Example

v1

v3

0 1

0

1

0 1

−2 −1

12

14

v2

v3

0 1

0

1

0 1

−2 −1

12

17

formula ID i var[i] low[i] high[i]
⊥ −2 – – –
> −1 – – –
v3 12 3 −2 −1

v1 ∧ v3 14 1 −2 12
¬v2 ∧ v3 17 2 12 −2

Motivation Binary Decision Diagrams BDD Implementation Summary

Building BDDs (1)

Building the Zero BDD

def zero():
return −2

Building the One BDD

def one():
return −1

Motivation Binary Decision Diagrams BDD Implementation Summary

Building BDDs (2)

Building Other BDDs

def bdd(v : variable, l : ID, h: ID):
if l = h:

return l
if 〈v , l , h〉 /∈ lookup:

Set i to a new unused ID.
var[i], low[i], high[i] := v , l , h
lookup[〈v , l , h〉] := i

return lookup[〈v , l , h〉]

We only create BDDs with zero, one and bdd (i.e., function bdd is
the only function writing to var, low, high and lookup). Thus:

BDDs are guaranteed to be reduced.

BDDs with different IDs always represent different sets.

Motivation Binary Decision Diagrams BDD Implementation Summary

BDD Operations

This representation allows to implement all operations so that the
following performance characteristics are met.

BDD

s ∈ S? O(k)
S := S ∪ {s} O(k)
S := S \ {s} O(k)
S ∪ S ′ O(‖S‖‖S ′‖)
S ∩ S ′ O(‖S‖‖S ′‖)
S \ S ′ O(‖S‖‖S ′‖)
S O(‖S‖)
{s | s(v) = 1} O(1)
S = ∅? O(1)
S = S ′? O(1)
|S | O(‖S‖)

Implementation details in
next chapter.

Motivation Binary Decision Diagrams BDD Implementation Summary

Summary

Motivation Binary Decision Diagrams BDD Implementation Summary

Summary

Binary decision diagrams are a data structure to compactly
represent and manipulate sets of variable assignments.

Reduced ordered BDDs are a canonical representation
of such sets.

An efficient implementation shares structure between BDDs.

	Motivation
	Binary Decision Diagrams
	BDD Implementation
	Summary

