

D7. Comparison of Heuristic Families II

Landmarks vs. h^{max}

D7.1 Landmarks vs. h^{max}

Planning and Optimization December 12, 2016 — D7. Comparison of Heuristic Families II	
D7.1 Landmarks vs. h ^{max}	
D7.2 Abstractions vs. Critical Pa	ath
D7.3 Overview	
D7.4 Summary	
M. Helmert, G. Röger (Universität Basel) Planning and Optimization	December 12, 2016 2 / 14

D7. Comparison of Heuristic Families II

Landmarks to h^{\max}

Theorem

Elementary landmark heuristics can be compiled into additive h^{max} heuristics in polynomial time.

Proof.

Let *L* be a subset of the operators. If *L*⁺ is not a landmark for *s* in Π^+ then $h_L(s) = 0$ and therefore trivially $h^{\max}(s) \ge h_L(s)$. Otherwise no goal state of Π^+ is reachable from *s* without an operator from *L*⁺. So if $h^{\max}(s) \ne \infty$ then the cost computation of h^{\max} must use an operator from *L*⁺ and therefore $h^{\max}(s) \ge \min_{o \in L} cost(o) = h_L$.

Landmarks vs. hmax

Theorem

For states with finite h^{max} value, the h^{max} heuristic can be compiled into additive elementary landmark heuristics in polynomial time.

Proof sketch:

The LM-Cut heuristic computes in each step a cut landmark and adapts the operator costs. Let $cost_i, cost_{i+1}$ be the operator costs before and after an iteration that discovered landmark *L*. Then $h_{cost_i}^{\max}(s) \leq h_{L,cost_i}(s) + h_{cost_{i+1}}^{\max}(s)$. The core argument is that every "reasonable" path in the justification graph enters the goal zone only once and therefore uses only one operator from *L*. So reducing the cost of each operator in *L* by $h_{L,cost_i}(s)$ cannot reduce h^{\max} by more than this value. The overall result of the theorem follows from a recursive application of the proof while $h_{cost_{i+1}}^{\max}(s) > 0$.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

December 12, 2016 5 / 14

Abstractions vs. Critical Path

D7. Comparison of Heuristic Families II

h^m to PDBs

Theorem

There is no polynmial-time compilation from h^m heuristics into additive PDB heuristics.

Proof.

We know that elementary landmarks are in polynomial time compilable into additive h^{\max} but not into additive PDB heuristics. So there is no polynomial-time compilation from $h^{\max} = h^1$ into additive PDB heuristics.

As $h^m \ge h^1$ for $m \ge 1$, this holds for any m.

D7. Comparison of Heuristic Families II

D7.2 Abstractions vs. Critical Path

M. Helmert, G. Röger (Universität Basel)

D7. Comparison of Heuristic Families II

Abstractions vs. Critical Path

6 / 14

December 12, 2016

PDBs to h^m

Theorem

There is no polynmial-time compilation of PDB heuristics into additive h^m heuristics.

Planning and Optimization

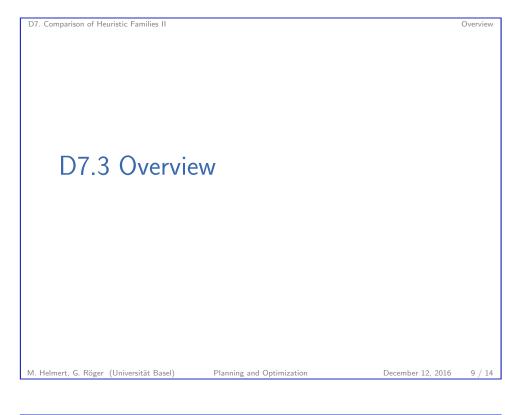
Proof.

Consider family $(\Pi_n)_{n \in \mathbb{N}_1}$ of STRIPS tasks, where $\Pi_n = \langle V_n, I_n, O_n, \gamma \rangle$ with $V_n = \{v_1, \dots, v_n\}$, $I_n(v) = \mathbf{F}$ for $v \in V_n$, $O = \{\langle \bigwedge_{i=1}^{j-1} v_i, v_j \land \bigwedge_{i=1}^{j-1} \neg v_i, 1 \rangle \mid 1 \leq j \leq n\}$ and $\gamma = \bigwedge_{i:i\text{-th bit in bin}(n) \text{ is } 1 V_i$.

A PDB on pattern $\{v_1, \ldots, v_{\lceil \log n \rceil}\}$ has O(n) states and encodes the perfect goal distance $h^*(I) = n$.

For a perfect initial estimate, the h^m heuristic needs to consider variable subsets up to size $\lceil \log n \rceil$. As *m* must be fixed due to the polynomial-time requirement, we can thus find for any such *m* a large enough *n* that proves the theorem.

Planning and Optimization



D7. Comparison of Heuristic Families II

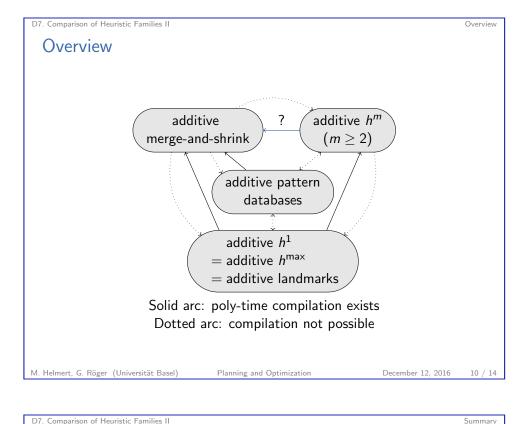
What else?

Post-hoc optimization

- ▶ For PDBs it computes state-specific additive set of PDB heuristics. \rightarrow Covered by results on PDB heuristics.
- Analogously for other classes of heuristics.

So far no results for

- ▶ landmarks not based on delete relaxation (Π^m landmarks),
- ▶ flow heuristics, and
- \blacktriangleright compilability from h^m heuristics into additive merge-and-shrink heuristics.



11 / 14

