Planning and Optimization
D4. Operator Counting

Malte Helmert and Gabriele Roger

Universitat Basel

December 8, 2016

Operator-counting Framework

9000000000000

Operator-counting Framework

Operator-counting Framework
0@00000000000

Reminder: Optimal Cost Partitioning for Landmarks

Variables
Occurrences,, for each operator o

Objective

Minimize) Occurrences, - cost(0)

Z Occurrences, > 1 for all landmarks L

o€l

Occurrences, > 0 for all operators o

Numbers of operator occurrences in any plan satisfy constraints.
Minimizing the total plan cost gives an admissible estimate.
Can we apply this idea more generally?

Operator-counting Framework
00®0000000000

Operator Counting

Operator-counting Constraints

@ linear constraints whose variables denote
number of occurrences of a given operator

@ must be satisfied by every plan

Examples:

o Y, + Yy >1 “must use o7 or oo at least once”

o Y, — Y, <0 “cannot use o; more often than 03"
Motivation:

@ declarative way to represent knowledge about solutions

@ allows reasoning about solutions to derive heuristic estimates

Operator-counting Framework
000®000000000

Operator Counting Heuristics

Operator occurrences in potential plans

(2,1,0)
(1,1,2) (0,0,0)
(1,2.1) ©01)
(1,3,1) (302
(3,2,2)
(2.2,0) (2,2,1) (1,2,0)

(3,1,0)

Operator-counting Framework
000®000000000

Operator Counting Heuristics

Operator occurrences in potential plans

(2,1,0)

(1,1,2)

“You need C

at least once”
(1,2,1) @

(0,0,0)

(3,0,2)

(1,31)

(2,2,0)
(1,2,0)

(3,1,0)

Operator-counting Framework
000®000000000

Operator Counting Heuristics

Operator occurrences in potential plans

(2,1,0)

(1,1,2)

“You need C

at least once”
(1,2,1) @

(0,0,0)

(2,2,0)
(1,2,0)
“A and B together

cost at least 4"

(3,1,0)

Operator-counting Framework
000®000000000

Operator Counting Heuristics

Operator occurrences in potential plans

(2,1,0)

(1,1,2)

“You need C

at least once”
(1,2,1) @

(0,0,0)

N\

(2,20)

(1,2,0)
“A and B together

cost at least 4"

“Use A once
more than C"
(3.1,0)

Operator-counting Framework
000®000000000

Operator Counting Heuristics

Operator occurrences in potential plans

(2,1,0)

(1,1,2) (0,0,0)

“You need C

at least once”
(1,2,1)

(0,0,1)

(2,2,0)

(1,2,0)
“A and B together

cost at least 4"

“Use A once
more than C"
(3.1,0)

Operator-counting Framework
000®000000000

Operator Counting Heuristics

Operator occurrences in potential plans

(2,1,0)

(1,1,2) (0,0,0)

“You need C

at least once”
(1,2,1) @

(22,0)

(1,2,0)
“A and B together

cost at least 4"

“Use A once
more than C"

(3,1,0)

Operator-counting Framework
0000®00000000

Operator-counting Constraint

Definition (Operator-counting Constraints)

Let N be a planning task with operators O and let s be a state.
Let) be the set of integer variables Y, for each o € O.

A linear inequality over) is called an operator-counting constraint
for s if for every plan 7 for s setting each Y, to the number of
occurrences of o in 7 is a feasible variable assignment.

Operator-counting Framework C ion to Cost Partitioning
00000®0000000

Operator-counting Heuristics

Definition (Operator-counting IP/LP Heuristic)

The operator-counting integer program IP¢ for a set C of
operator-counting constraints for state s is

Minimize Z Y, - cost(o) subject to
oc0
Cand Y, >0 forall o€ O,

where o is the set of operators.

The [P heuristic hg’ is the objective value of IP¢, the LP heuristic
hEF is the objective value of its LP-relaxation. If the LP/IP is
infeasible, the heuristic estimate is co.

Operator-counting Framework
000000e000000

Admissibility

Theorem (Operator-counting Heuristics are Admissible)

The IP and the LP heuristic are admissible.

Let C be a set of operator-counting constraints for state s and m
be an optimal plan for s. The number of operator occurrences of 7
are a feasible solution for C. As the IP/LP minimizes the total
plan cost, the objective value cannot exceed the cost of 7 and is
therefore an admissible estimate. Ol

Operator-counting Framework
0000000800000

Dominance

Let C and C' be operator-counting constraints for s and let
C C C'. Then IPC < IPC/ and LPC < LPC/.

| A

Proof.

Every feasible solution of C’ is also feasible for C. As the LP/IP is
a minimization problem, the objective value subject to C can
therefore not be larger than the one subject to C’. Ol

y

Adding more constraints can only improve the heuristic estimate.

Operator-counting Framework
0000000080000

Combining Heuristics

Combination of two heuristics
@ Use both operator-counting constraints
@ Combination always dominates individual heuristics

@ Positive interaction between constraints

Expansions

unsolved ¥ X i
107 P
106 |]
105 x
10% | &

103 F X 4
102 ¢ . El
101]
100+ 1

x
X x- om0t
L

max(Landmarks, Flow)

10° 10' 102 103 10* 10° 10° 107
Landmarks + Flow

uns. f

Combination often better than best individual heuristic

Operator-counting Framework
0000000008000

Constraints from Disjunctive Action Landmarks

Optimal cost partitioning for disjunctive action landmarks

@ Use one landmark constraint per landmark

Landmark constraint for landmark L

o€l

Operator-counting Framework
0000000000800

Constraints from Flow Heuristic

Flow heuristic

@ Use one flow constraint per atom

Flow Constraint for atom a

[a€s]+ Z Yo=[aen]+ Z Yo

o€ 0:aceff{0) o€ 0:acpre(o)

Remark: Assumes transition normal form (not a limitation)

Operator-counting Framework
00000000000 e0

Constraints from Post-hoc Optimization Heuristic

Post-hoc optimization heuristic
@ In chapter D3: X, for cost incurred by operator o

@ Replace each such variable with Y, - cost(0)
to fit the operator-counting framework.

@ Use one post-hoc optimization constraint per sub-heuristic

Post-hoc optimization constraint for heuristic h

Z Y, - cost(o) > h(s)

o is relevant for h

Operator-counting Framework
0000000000008

Further Examples?

@ The definition of operator-counting constraints can be
extended to groups of constraints and auxiliary variables.
o With this extended definition we could also cover

e optimal cost partitioning for abstractions, and
o the perfect relaxation heuristic ht.

Connection to Cost Partitioning

@®0000

Connection to Cost Partitioning

Connection to Cost Partitioning

O@000

Operator-counting Heuristics and General Cost Partitioning

Combining operator-counting heuristics in one LP
is equivalent to
computing their optimal general cost partitioning (gOCP).

Proof idea: The linear programs are each others duals.

Connection to Cost Partitioning
©0®00

Use the Theorem to Combine Heuristics

e Easy way to compute cost partitioning of heuristics

o LP can be more compact (variable elimination)
o No need for one variable per operator and subproblem

@ Even better combination of heuristics with IP heuristic

o Considers that operator cannot be used 1.5 times
e But computation is no longer polynomial

Connection to Cost Partitioning
[eleTe] Yol

Use the Theorem to Analyze Heuristics

Analyze operator counting heuristics

@ Group linear constraints into sets of operator-counting
constraints

@ Figure out what heuristic is computed with just one such set

© Your original operator-counting heuristic computes the
optimal general cost partition of those component heuristics

Connection to Cost Partitioning
[eleTe] Yol

Use the Theorem to Analyze Heuristics

Analyze operator counting heuristics
Example: flow heuristic

@ Group linear constraints into sets of operator-counting
constraints

@ Figure out what heuristic is computed with just one such set

© Your original operator-counting heuristic computes the
optimal general cost partition of those component heuristics

Connection to Cost Partitioning
[eleTe] Yol

Use the Theorem to Analyze Heuristics

Analyze operator counting heuristics
Example: flow heuristic

@ Group linear constraints into sets of operator-counting
constraints

e One group of flow constraints per variable
@ Figure out what heuristic is computed with just one such set

© Your original operator-counting heuristic computes the
optimal general cost partition of those component heuristics

Connection to Cost Partitioning
[eleTe] Yol

Use the Theorem to Analyze Heuristics

Analyze operator counting heuristics
Example: flow heuristic
@ Group linear constraints into sets of operator-counting
constraints
e One group of flow constraints per variable
@ Figure out what heuristic is computed with just one such set

e Minimizing total cost while respecting flow
in projection to one variable
e Shortest path in projection

© Your original operator-counting heuristic computes the
optimal general cost partition of those component heuristics

Connection to Cost Partitioning
[eleTe] Yol

Use the Theorem to Analyze Heuristics

Analyze operator counting heuristics
Example: flow heuristic

@ Group linear constraints into sets of operator-counting
constraints

e One group of flow constraints per variable
@ Figure out what heuristic is computed with just one such set
e Minimizing total cost while respecting flow
in projection to one variable
e Shortest path in projection
© Your original operator-counting heuristic computes the
optimal general cost partition of those component heuristics
o Flow heuristic = gOCP(atomic projection heuristics)

Connection to Cost Partitioning
ooooe

Other Examples

What about the rest of our examples?
@ Landmark constraints
o gOCP(individual landmark heuristics)
@ Post-hoc optimization heuristic

o gOCP(heuristics that spend a minimum cost on relevant ops)
e Also: cost partitioning over atomic projection heuristics

@ Operator costs not independent

@ Scale with one factor per projection

Summary

Summary
000

Summary

@ Many heuristics can be formulated in terms of
operator-counting constraints.

@ The operator-counting heuristic framework allows to
combine the constraints and to reason on the entire
encoded declarative knowledge.

@ The heuristic estimate for the combined constraints
can be better than the one of the best ingredient heuristic
but never worse.

@ The combination into one operator-counting heuristic

corresponds to the computation of the optimal general
cost partitioning for the ingredient heuristics.

Summary
feYe] Yo}

Literature (1)

References on the operator-counting framework:

[Blai Bonet.
An Admissible Heuristic for SAS+ Planning Obtained from the
State Equation.
Proc. I1JCAI 2013, pp. 2268-2274, 2013.
Suggests combination of flow constraints and landmark
constraints.

@ Tatsuya Imai and Alex Fukunaga.
A Practical, Integer-linear Programming Model for the
Delete-relaxation in Cost-optimal Planning.
Proc. ECAI 2014, pp. 459-464, 2014.
IP formulation of ht.

Summary
ocooe

Literature (2)

@ Florian Pommerening, Gabriele Réger, Malte Helmert and Blai
Bonet.
LP-based Heuristics for Cost-optimal Planning.
Proc. ICAPS 2014, pp. 226-234, 2014.
Systematic introduction of operator-counting framework.

@ Florian Pommerening, Malte Helmert, Gabriele Réger and
Jendrik Seipp.
From Non-Negative to General Operator Cost Partitioning.
Proc. AAAI 2015, pp. 3335-3341, 2015.
Relation to general cost partitioning.

	Operator-counting Framework
	Connection to Cost Partitioning
	Summary

