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D3. Post-hoc Optimization Introduction

Combining Estimates from Abstraction Heuristics

I Pattern databases grow exponentially with the number of
variables in the pattern.

I Instead of one large pattern, planners use collections of
multiple smaller patterns.

I We alrady know two approaches to derive heuristic estimates
from a pattern collection:

I Canonical heuristic
I Optimal cost partitioning

Can we do better than these approaches?
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Reminder: The Canonical Heuristic Function

If for a set of patterns no operator affects more than one pattern,
the sum of the heuristic estimates is admissible.

Definition (Canonical Heuristic Function)

Let Π be an FDR planning task. Let C be a pattern collection for
Π and let cliques(C) denote the set of all maximal additive subsets
of C. The canonical heuristic hC for C is defined as

hC(s) = max
D∈cliques(C)

∑
P∈D

hP(s).

For a given pattern collection, the canonical heuristic is the best
possible admissible heuristic not using cost partitioning.
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Reminder: Optimal Cost Partitioning for Abstractions

Optimal cost partitioning for abstractions. . .

I . . . uses a state-specific LP to find the best possible cost
partitioning, and sums up the heuristic estimates.

I . . . dominates the canonical heuristic, i.e.. for the same
pattern collection, it never gives lower estimates than hC .

I . . . is very expensive to compute
(recomputing the PDBs in every state).
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Example Task (1)

Example (Example Task)

SAS+ task Π = 〈V , I ,O, γ〉 with

I V = {A,B,C} with dom(v) = {0, 1, 2, 3, 4} for all v ∈ V

I I = {A 7→ 0,B 7→ 0,C 7→ 0}
I O = {incvx | v ∈ V , x ∈ {0, 1, 2}} ∪ {jumpv | v ∈ V }

I incvx = 〈v = x , v := x + 1, 1〉
I jumpv = 〈

∧
v ′∈V :v ′ 6=v v

′ = 4, v := 3, 1〉
I γ = A = 3 ∧ B = 3 ∧ C = 3

I Each optimal plan consists of three increment operators for
each variable  h∗(I ) = 9

I Each operator affects only one variable.
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Example Task (2)

I In projections on single variables we can reach the goal with a
jump operator: h{A}(I ) = h{B}(I ) = h{C}(I ) = 1.

I In projections on more variables, we need for each variable
three applications of increment operators to reach the
abstract goal from the abstract initial state:
h{A,B}(I ) = h{A,C}(I ) = h{B,C}(I ) = 6

Example (Canonical Heuristic)

C = {{A}, {B}, {C}, {A,B}, {A,C}, {B,C}}

hC(s) = max{h{A}(s) + h{B}(s) + h{C}(s), h{A}(s) + h{B,C}(s),

h{B}(s) + h{A,C}(s), h{C}(s) + h{A,B}(s)}

hC(I ) = 7

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 8, 2016 8 / 21



D3. Post-hoc Optimization Post-hoc Optimization Heuristic

D3.2 Post-hoc Optimization Heuristic
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Post-hoc Optimization Heuristic: Idea

Consider the example task:

I type-v operator: operator modifying variable v

I h{A,B} = 6
⇒ any plan contains at least 6 operators of type A or B.

I h{A,C} = 6
⇒ any plan contains at least 6 operators of type A or C .

I h{B,C} = 6
⇒ any plan contains at least 6 operators of type B or C .

I ⇒ at least 9 operators in any plan

Can we generalize this kind of reasoning?
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Post-hoc Optimization Heuristic: Linear Program (1)

Construct linear program for pattern collection C:

I variable Xo for each operator o ∈ O

I intuitively Xo is cost incurred by operator o

I PDB heuristics are admissible

hP(s) ≤
∑

o∈O
Xo for each pattern P ∈ C

I can tighten these constraints to

hP(s) ≤
∑

o∈O:o affects P
Xo
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Post-hoc Optimization Heuristic: Linear Program (2)

For pattern collection C:

Variables

Xo for each operator o ∈ O

Objective

Minimize
∑

o∈O Xo

Subject to∑
o∈O:o affects P

Xo ≥ hP(s) for all patterns P ∈ C

Xo ≥ 0 for all o ∈ O
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Post-hoc Optimization Heuristic: Simplifying the LP

I Reduce size of LP by aggregating variables
which always occur together in constraints.

I Happens when several operators are relevant for exactly the
same PDBs.

I Partitioning O/∼ induced by this equivalence relation

I One variable X[o] for each [o] ∈ O/∼
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Post-hoc Optimization Heuristic: Definition

Definition (Post-hoc Optimization Heuristic)

The post-hoc optimization heuristic hPhO
C for pattern collection C

is the objective value of the following linear program:

Minimize
∑

[o]∈O/∼

X[o] subject to

∑
[o]∈O/∼:o affects P

X[o] ≥ hP(s) for all P ∈ C

X[o] ≥ 0 for all [o] ∈ O/∼,

where o ∼ o ′ iff o and o ′ affect the same patterns in C.

I Precompute PDBs for all P ∈ C.

I Create LP for initial state.

I For each new state, just change the bounds hP(s).
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Post-hoc Optimization Heuristic: Admissibility

Theorem (Admissibility)

The post-hoc optimization heuristic is admissible.

Proof.

Let Π be a planning task and C be a pattern collection.
Let π be an optimal plan for state s and let costπ(O ′) be the cost
incurred by operators from O ′ ⊆ O in π.

Setting each X[o] to costπ([o]) is a feasible variable assignment:
Constraints X[o] ≥ 0 are satisfied. For each P ∈ C, π is a solution
in the abstract transition system and the sum in the corresponding
constraint equals the cost of the “true” abstract state transitions
(i.e.. not accounting for self-loops). As hP(s) corresponds to the
cost of an optimal solution in the abstraction, the inequality holds.

For this assignment the objective function has value h∗(s)
(cost of π), so the objective value of the LP is admissible.
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Post-hoc Optimization Heuristic: Insight

Corresponding dual program to hPhO LP:

Maximize
∑

P∈C YPh
P(s) subject to

∑
P∈C:o affects P

YP ≤ 1 for all [o] ∈ O/∼

YP ≥ 0 for all P ∈ C.

We compute a state-specific cost partitioning that can only scale
the operator costs within each heuristic by a factor Yi .
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Relation to Canonical Heuristic

Theorem

Consider the dual D of the LP solved by hPhO
C in state s for a given

pattern collection C. If we restrict the variables in D to integers,
the objective value is the canonical heuristic value hC(s).

Corollary

The post-hoc optimization heuristic hPhO
C dominates the canonical

heuristic hC for the same pattern collection C.
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Post-hoc Optimization Heuristic: Remarks

I For the canonical heuristic, we need to find all maximal
cliques, which is an NP-hard problem.

I The post-hoc optimization heuristic dominates the canonical
heuristic and can be computed in polynomial time.

I With post-hoc optimization, we can handle much larger
pattern collections than found with the iPDB procedure.

I For the approach it is better to use a large number of small
patterns, e.g., all patterns up to size 2 that satisfy the same
relevance criteria as used for the iPDB patterns.

I Post-hoc optimization is not limited to PDBs but there is a
straightforward extension to any admissible heuristic for which
we can determine the “relevant” operators.
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D3. Post-hoc Optimization Summary

Summary

I Post-hoc optimization heuristic explores middle ground
between canonical heuristic and optimal cost partitioning.

I For the same pattern collection the post-hoc optimization
heuristic dominates the canonical heuristic.

I The computation can be done in polynomial time.
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Literature

References on post-hoc optimization:

Florian Pommerening, Gabriele Röger and Malte Helmert.
Getting the Most Out of Pattern Databases for Classical
Planning.
Proc. IJCAI 2013, pp. 2357–2364, 2013.
Introduces post-hoc optimization and points out relation to
canonical heuristic.
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