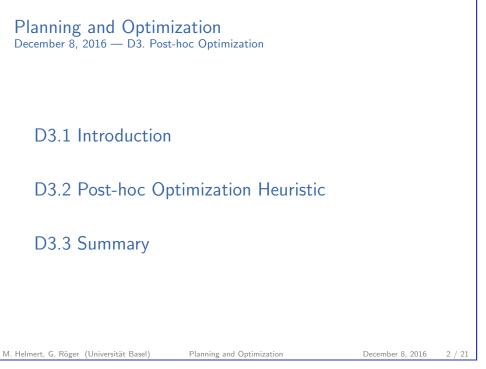
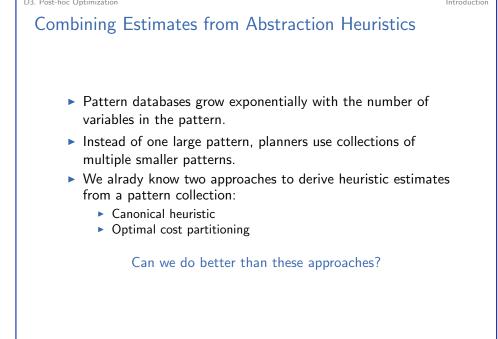


Planning and Optimization





M. Helmert, G. Röger (Universität Basel)

D3. Post-hoc Optimization

Reminder: The Canonical Heuristic Function

If for a set of patterns no operator affects more than one pattern, the sum of the heuristic estimates is admissible.

Definition (Canonical Heuristic Function)

Let Π be an FDR planning task. Let C be a pattern collection for Π and let cliques(C) denote the set of all maximal additive subsets of C. The canonical heuristic h^{C} for C is defined as

$$h^{\mathcal{C}}(s) = \max_{\mathcal{D} \in \textit{cliques}(\mathcal{C})} \sum_{P \in \mathcal{D}} h^{P}(s).$$

For a given pattern collection, the canonical heuristic is the best possible admissible heuristic not using cost partitioning.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

December 8, 2016

Introduction

5 / 21

Example Task (1)

D3. Post-hoc Optimization

Example (Example Task) SAS⁺ task $\Pi = \langle V, I, O, \gamma \rangle$ with • $V = \{A, B, C\}$ with dom $(v) = \{0, 1, 2, 3, 4\}$ for all $v \in V$ • $I = \{A \mapsto 0, B \mapsto 0, C \mapsto 0\}$ • $O = \{inc_x^v \mid v \in V, x \in \{0, 1, 2\}\} \cup \{jump^v \mid v \in V\}$ • $inc_x^v = \langle v = x, v := x + 1, 1 \rangle$ • $jump^v = \langle \bigwedge_{v' \in V: v' \neq v} v' = 4, v := 3, 1 \rangle$ • $\gamma = A = 3 \land B = 3 \land C = 3$ • Each optimal plan consists of three increment operators for each variable $\rightsquigarrow h^*(I) = 9$

Planning and Optimization

D3. Post-hoc Optimization

Reminder: Optimal Cost Partitioning for Abstractions

Optimal cost partitioning for abstractions...

- uses a state-specific LP to find the best possible cost partitioning, and sums up the heuristic estimates.
- ... dominates the canonical heuristic, i.e.. for the same pattern collection, it never gives lower estimates than h^C.
- ... is very expensive to compute (recomputing the PDBs in every state).

M. Helmert, G. Röger (Universität Basel)

December 8, 2016

D3. Post-hoc Optimization

Example Task (2)

In projections on single variables we can reach the goal with a jump operator: h^{A}(I) = h^{B}(I) = h^{C}(I) = 1.

Planning and Optimization

In projections on more variables, we need for each variable three applications of increment operators to reach the abstract goal from the abstract initial state: h^{A,B}(I) = h^{A,C}(I) = h^{B,C}(I) = 6

Example (Canonical Heuristic)

$$C = \{\{A\}, \{B\}, \{C\}, \{A, B\}, \{A, C\}, \{B, C\}\}$$
$$h^{C}(s) = \max\{h^{\{A\}}(s) + h^{\{B\}}(s) + h^{\{C\}}(s), h^{\{A\}}(s) + h^{\{B,C\}}(s),$$
$$h^{\{B\}}(s) + h^{\{A,C\}}(s), h^{\{C\}}(s) + h^{\{A,B\}}(s)\}$$

Planning and Optimization

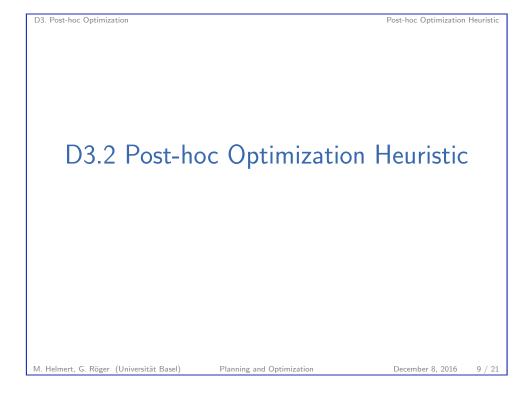
 $h^{\mathcal{C}}(I) = 7$

8 / 21

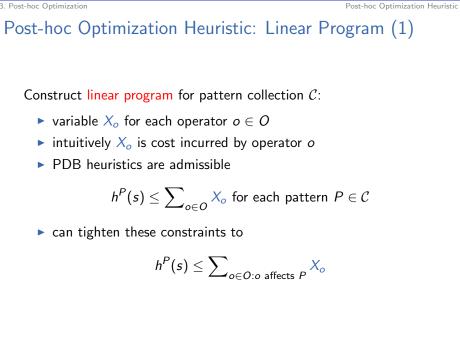
Introduction

6 / 21

Introductio



D3. Post-hoc Optimization



D3. Post-hoc C	Optimizatio
----------------	-------------

Post-hoc Optimization Heuristic: Idea

Consider the example task:

- type-v operator: operator modifying variable v
- ▶ $h^{\{A,B\}} = 6$
 - \Rightarrow any plan contains at least 6 operators of type A or B.
- ▶ $h^{\{A,C\}} = 6$
 - \Rightarrow any plan contains at least 6 operators of type A or C.
- ▶ $h^{\{B,C\}} = 6$
 - \Rightarrow any plan contains at least 6 operators of type B or C.

Planning and Optimization

 \blacktriangleright \Rightarrow at least 9 operators in any plan

Can we generalize this kind of reasoning?

M. Helmert, G. Röger (Universität Basel)

December 8, 2016

Post-hoc Optimization Heuristic

10 / 21

```
D3. Post-hoc Optimization
                                                                          Post-hoc Optimization Heuristic
  Post-hoc Optimization Heuristic: Linear Program (2)
      For pattern collection C:
      Variables
      X_o for each operator o \in O
      Objective
      Minimize \sum_{o \in O} X_o
      Subject to
               \sum_{o \in O:o \text{ affects } P} X_o \ge h^P(s) \quad \text{for all patterns } P \in \mathcal{C}
                                    X_o > 0 for all o \in O
M. Helmert, G. Röger (Universität Basel)
                                       Planning and Optimization
                                                                           December 8, 2016
                                                                                            12 / 21
```

December 8, 2016

11 / 21

Post-hoc Optimization Heuristic: Simplifying the LP

- Reduce size of LP by aggregating variables which always occur together in constraints.
- Happens when several operators are relevant for exactly the same PDBs.

Planning and Optimization

- \blacktriangleright Partitioning $O\!/\!\!\sim$ induced by this equivalence relation
- One variable $X_{[o]}$ for each $[o] \in O/\!\!\sim$

M. Helmert, G. Röger (Universität Basel)

D3. Post-hoc Optimization

Post-hoc Optimization Heuristic

15 / 21

13 / 21

December 8, 2016

Post-hoc Optimization Heuristic: Admissibility

Theorem (Admissibility)

The post-hoc optimization heuristic is admissible.

Proof.

Let Π be a planning task and C be a pattern collection. Let π be an optimal plan for state *s* and let $cost_{\pi}(O')$ be the cost incurred by operators from $O' \subseteq O$ in π .

Setting each $X_{[o]}$ to $cost_{\pi}([o])$ is a feasible variable assignment: Constraints $X_{[o]} \ge 0$ are satisfied. For each $P \in C$, π is a solution in the abstract transition system and the sum in the corresponding constraint equals the cost of the "true" abstract state transitions (i.e.. not accounting for self-loops). As $h^{P}(s)$ corresponds to the cost of an optimal solution in the abstraction, the inequality holds.

For this assignment the objective function has value $h^*(s)$ (cost of π), so the objective value of the LP is admissible.

Post-hoc Optimization Heuristic: Definition

Definition (Post-hoc Optimization Heuristic)

The post-hoc optimization heuristic h_C^{PhO} for pattern collection C is the objective value of the following linear program:

$$\begin{array}{ll} \text{Minimize} & \sum_{[o] \in \mathcal{O}/\!\!\sim} X_{[o]} \text{ subject to} \\ \\ & \sum_{[o] \in \mathcal{O}/\!\sim:o \text{ affects } P} X_{[o]} \geq h^P(s) & \text{for all } P \in \mathcal{C} \\ & X_{[o]} \geq 0 & \text{for all } [o] \in \mathcal{O}/\!\!\sim, \end{array}$$

where $o \sim o'$ iff o and o' affect the same patterns in C.

- Precompute PDBs for all $P \in C$.
- ► Create LP for initial state.
- For each new state, just change the bounds $h^{P}(s)$.

Planning and Optimization

```
M. Helmert, G. Röger (Universität Basel)
```

December 8, 2016

14 / 21

16 / 21

```
D3. Post-hoc Optimization Heuristic: Insight

Corresponding dual program to h^{PhO} LP:

Maximize \sum_{P \in C} Y_P h^P(s) subject to

\sum_{P \in \mathcal{C}: o \text{ affects } P} Y_P \leq 1 for all [o] \in O/\sim

Y_P \geq 0 for all P \in C.

We compute a state-specific cost partitioning that can only scale

the operator costs within each heuristic by a factor Y_i.
```

M. Helmert, G. Röger (Universität Basel)

Relation to Canonical Heuristic

Theorem

Consider the dual D of the LP solved by h_{C}^{PhO} in state s for a given pattern collection C. If we restrict the variables in D to integers. the objective value is the canonical heuristic value $h^{\mathcal{C}}(s)$.

Corollary

The post-hoc optimization heuristic h_c^{PhO} dominates the canonical heuristic $h^{\mathcal{C}}$ for the same pattern collection \mathcal{C} .

Planning and Optimization

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

D3. Post-hoc Optimization

December 8, 2016

17 / 21

Summar

19 / 21

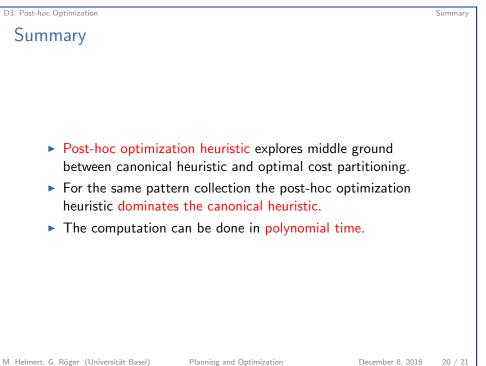
D3.3 Summary

Post-hoc Optimization Heuristic: Remarks

- ▶ For the canonical heuristic, we need to find all maximal cliques, which is an NP-hard problem.
- ► The post-hoc optimization heuristic dominates the canonical heuristic and can be computed in polynomial time.
- ▶ With post-hoc optimization, we can handle much larger pattern collections than found with the iPDB procedure.
- For the approach it is better to use a large number of small patterns, e.g., all patterns up to size 2 that satisfy the same relevance criteria as used for the iPDB patterns.
- Post-hoc optimization is not limited to PDBs but there is a straightforward extension to any admissible heuristic for which we can determine the "relevant" operators.

```
M. Helmert, G. Röger (Universität Basel)
```

Planning and Optimization December 8, 2016



18 / 21

