

Planning and Optim December 1, 2016 — C23. Lin	ization ear & Integer Programming		
C23.1 Examples			
C23.2 Linear Prog	grams		
C23.3 Duality			
C23.4 Summary			
M. Helmert, G. Röger (Universität Basel)	Planning and Optimization	December 1, 2016	2 / 26

Linear Programs and Integer Programs

Linear Program

- A linear program (LP) consists of:
 - ► a finite set of real-valued variables V
 - ▶ a finite set of linear inequalities (constraints) over V
 - \blacktriangleright an objective function, which is a linear combination of V
 - which should be minimized or maximized.

Integer program (IP): ditto, but with some integer-valued variables

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

C23. Linear & Integer Programming

A standard maximum problem is often given by

- ▶ an *m*-vector $\mathbf{b} = \langle b_1, \dots, b_m \rangle^T$,
- an *n*-vector $\mathbf{c} = \langle c_1, \ldots, c_n \rangle^T$,
- \blacktriangleright and an $m \times n$ matrix

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12}x_2 & \dots & a_{1n} \\ a_{21} & a_{22}x_2 & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Then the problem is to find a vector x = ⟨x₁,..., x_n⟩^T to maximize c^Tx subject to Ax ≤ b and x ≥ 0.

Planning and Optimization

C23. Linear & Integer Programming

Linear Programs

December 1, 2016

9 / 26

11 / 26

Linear Programs

Standard Maximum Problem

Normal form for maximization problems:

Definition (Standard Maximum Problem) Find values for x_1, \ldots, x_n , to maximize

$$c_1x_1+c_2x_2+\cdots+c_nx_n$$

Linear Programs

10 / 26

subject to the constraints

 $\begin{array}{l} a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} \leq b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} \leq b_{2} \\ \vdots \\ a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} \leq b_{m} \\ \text{and } x_{1} \geq 0, x_{2} \geq 0, \dots, x_{n} \geq 0. \end{array}$ M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 1, 2016

C23. Linear & Integer Programming	Linear	Programs	
Standard Minimum Problem			
Normal form for minimization problems:			
Definition (Standard Minimum Problem)			
Find values for y_1, \ldots, y_m , to minimize			
$b_1y_1+b_2y_2+\cdots+b_my_m$			
subject to the constraints			
$y_1a_{11} + y_2a_{21} + \cdots + y_ma_{m1} \ge c_1$			
$y_1a_{12} + y_2a_{22} + \cdots + y_ma_{m2} \ge c_2$			
$y_1a_{1n}+y_2a_{2n}+\cdots+y_ma_{mn}\geq c_n$			
and $y_1 \ge 0, y_2 \ge 0, \dots, y_m \ge 0.$			
M. Helmert, G. Röger (Universität Basel) Planning and Optimization	December 1, 2016	12 / 26	

C23. Linear & Integer Programming

C23. Linear & Integer Programming

Terminology

- A vector x for a maximum problem or y for a minimum problem is feasible if it satisfies the constraints.
- A linear program is feasible if there is such a feasible vector.
 Otherwise it is infeasible.
- A feasible maximum (resp. minimum) problem is unbounded if the objective function can assume arbitrarily large positive (resp. negative) values at feasible vectors. Otherwise it it bounded.
- The objective value of a bounded feasible maximum (resp. minimum) problem is the maximum (resp. minimum) value of the objective function with a feasible vector.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

December 1, 2016 14 / 26

Linear Program

Linear Programs

Linear Programs

17 / 26

December 1, 2016

LP Relaxation

Theorem (LP Relaxation)

The LP relaxation of an integer program is the problem that arises by removing the requirement that variables are integer-valued.

For a maximization (resp. minimization) problem, the objective value of the LP relaxation is an upper (resp. lower) bound on the value of the IP.

Planning and Optimization

Proof idea.

Every feasible vector for the IP is also feasible for the LP.

M. Helmert, G. Röger (Universität Basel)

C23. Linear & Integer Programming

Some LP Theory: Duality
Some LP theory: Every LP has an alternative view (its dual).
roughly: variables and constraints swap roles
dual of maximization LP is minimization LP and vice versa
dual of dual: original LP

C23.3 Duality

C23. Linear & Integer Programming

Planning and Optimization

Duality

Dual for Diet Problem

Example (Dual of Linear Program for Diet Problem) maximize $\sum_{j=1}^{m} y_j r_j$ subject to

$$\sum_{j=1}^{m} a_{ij} y_j \le c_i \qquad \text{for } 1 \le i \le n$$
$$y_j \ge 0 \qquad \text{for } 1 \le j \le m$$

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

C23. Linear & Integer Programming

Dual for Diet Problem: Interpretation

Example (Dual of Linear Program for Diet Problem) maximize $\sum_{j=1}^{m} y_j r_j$ subject to

$$\sum_{j=1}^{m} a_{ij} y_j \leq c_i \qquad ext{for } 1 \leq i \leq n$$

 $y_j \geq 0 \qquad ext{for } 1 \leq j \leq m$

Find nutrient prices that maximize total worth of daily nutrients. The value of nutrients in food F_i may not exceed the cost of F_i .

M. Helmert, G. Röger (Universität Basel)

December 1, 2016 21 / 26

