Planning and Optimization C18. Critical Path Heuristics: Properties and Π^m Compilation

Malte Helmert and Gabriele Röger

Universität Basel

November 21, 2016

Planning and Optimization

C18. Critical Path Heuristics: Properties and Π^m Compilation

M. Helmert, G. Röger (Universität Basel)

Heuristic Properties

1 / 21

November 21, 2016

C18.1 Heuristic Properties

Planning and Optimization
November 21, 2016 — C18. Critical Path Heuristics: Properties and II''' Compilation
C18.1 Heuristic Properties
C18.2 Π^m Compilation
C10.2 Summer (
C18.3 Summary

C18. Critical Path Heuristics: Properties and II^m Compilation Heuristic for Forward or Backward Search? (1)

C18 4 Literature

M. Helmert, G. Röger (Universität Basel)

Heuristic Properties

November 21, 2016 2 / 21

Any heuristic can be used for both, forward and backward search:

Planning and Optimization

Let h_f be a forward search heuristic (as in earlier chapters). We can use it to get estimate for state S in backward search on task (V, I, O, G), computing $h_f(I)$ on task (V, I, O, S).

We also can use a backward search heuristic h_b in forward search on task (V, I, O, G), determining estimate for state s as $h_b(G)$ on task (V, s, O, G).

Heuristic for Forward or Backward Search? (2)

We defined h^m so that it can directly be used for both directions on task (V, I, O, G) as

- $h_f^m(s) := h^m(s, G)$ for forward search, or
- $h_b^m(S) := h^m(I, S)$ for backward search.

Precomputation determines $h^m(s, B)$ for all $B \subseteq V$ with $|B| \leq m$.

For h^m_f, we can only use these values for a single heuristic evaluation, because the state s changes.

Planning and Optimization

- For h^m_b, we can re-use these values and all subsequent heuristic evaluations are quite cheap.
- $\rightarrow h^m$ better suited for backward search
- \rightarrow We examine it in the following in this context.

```
M. Helmert, G. Röger (Universität Basel)
```

November 21, 2016

5 / 21

Heuristic Properties

Heuristic Propertie

C18. Critical Path Heuristics: Properties and Π^m Compilation

Heuristic Properties (2)

Proof (continued).

Consistency: Assume h_b^m is not consistent, i.e., there is a state S and an operator o, where $R := sregr_o(S) \neq \bot$ such that $h_b^m(S) > cost(o) + h_b^m(R)$.

Then $h_b^m(S) = h^m(I, S)$ and there is $S' \subseteq S$ with $|S'| \leq m$ and $h^m(I, S') = h^m(I, S)$: if $|S| \leq m$, choose S' = S, otherwise choose any maximizing subset from the last h^m equation.

As $S' \subseteq S$ and $sregr_o(S) \neq \bot$, also $R' := sregr_o(S') \neq \bot$ and $(R', o) \in R_O(S')$. This gives $h^m(I, S') \leq cost(o) + h^m(I, R')$.

As $S' \subseteq S$, it holds that $R' \subseteq R$ and $h^m(I, R') \leq h^m(I, R)$.

Overall, we get $h_b^m(S) = h^m(I, S) = h^m(I, S') \le cost(o) + h^m(I, R') \le cost(o) + h^m(I, R) = cost(o) + h_b^m(R)$. 4

Heuristic Properties (1)

Theorem

Let $\Pi = \langle V, I, O, G \rangle$ be a STRIPS planning tasks and $S \subseteq V$ be a backward search state. Then $h_b^m(S) := h^m(I, S)$ is a safe, goal-aware, consistent, and admissible heuristic for Π .

Proof.

We prove goal-awareness and consistency, the other properties follow from these two.

Goal-awareness: S is a goal state iff $S \subseteq I$. Then $h_b^m(S) = h^m(I, S) = 0$.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization No

```
November 21, 2016 6 / 21
```

C18. Critical Path Heuristics: Properties and Π^m Compilation Heuristic Properties (3) Theorem For $m, m' \in \mathbb{N}_1$ with m < m' it holds that $h^m \le h^{m'}$. (Proof omitted.)

C18. Critical Path Heuristics: Properties and Π^m Compilation

Heuristic Properties

Heuristic Properties (4)

C18. Critical Path Heuristics: Properties and Π^m Compilation

Theorem

Let $\Pi = \langle V, I, O, G \rangle$ be a STRIPS planning task. For a sufficiently large m, it holds that $h^m = r^*$ on Π .

Proof Sketch.

It is easy to check that for m = |V| the heuristic definition of h^m can be simplified so that it becomes the definition of r^* .

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

9 / 21

11 / 21

November 21, 2016

 Π^m Compilation: Motivation

C18. Critical Path Heuristics: Properties and Π^m Compilation

- We have seen that h¹ = h^{max} and that h^{max} corresponds to the cost of a critical path in the relaxed task graph.
- What about m > 1?
- Π^m compilation derives for a given m a task Π^m from the original task Π.
- h^m corresponds to cost of critical path in the relaxed task graph of Π^m.

Planning and Optimization

- \rightarrow Better understanding of h^m
- \rightarrow Also interesting in the context of landmark heuristics

C18.2 Π^m Compilation

C18. Critical Path Heuristics: Properties and Π^m Compilation

Idea of Π^m Compilation

M. Helmert, G. Röger (Universität Basel)

- h^{max} only considers variables individually.
- For example, it cannot detect that a goal {a, b} is unreachable from the empty set if every action that adds a deletes b and vice versa.

Planning and Optimization

- ▶ Idea: Use meta-variable $v_{\{a,b\}}$ to capture such interactions.
- Intuitively v_{a,b} stands for "a state where a and b are both true is reachable".

November 21, 2016

10 / 21

C18. Critical Path Heuristics: Properties and Π^m Compilation Some Notation • For a set X of variables and $m \in \mathbb{N}_1$ we define $X^m := \{v_Y \mid Y \subseteq X, |Y| \le m\}.$ • Example: $\{a, b, c\}^2 = \{v_{\emptyset}, v_{\{a\}}, v_{\{b\}}, v_{\{c\}}, v_{\{a,b\}}, v_{\{a,c\}}, v_{\{b,c\}}\}$ M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 21, 2016 13 / 21

C18. Critical Path Heuristics: Properties and Π^m Compilation

П^m Compilat

 Π^m for Running Example with m = 2

For running example Π we receive $\Pi^2 = \langle V', I', O', G' \rangle$, where

$$V' = \{v_{\emptyset}, v_{\{a\}}, v_{\{b\}}, v_{\{c\}}, v_{\{a,b\}}, v_{\{a,c\}}\}$$
$$I' = \{v_{\emptyset}, v_{\{a\}}\}$$
$$G' = \{v_{\emptyset}, v_{\{a\}}, v_{\{b\}}, v_{\{c\}}, v_{\{a,b\}}, v_{\{a,c\}}\}$$
$$O' = \{a_{o_1,\emptyset}, a_{o_1,\{a\}}, a_{o_2,\emptyset}, a_{o_2,\{c\}}, a_{o_3,\emptyset}, a_{o_3,\{b\}}, a_{o_3,\{c\}}\}$$

with (for example)

$$a_{o_3,\{c\}} = \langle \{v_{\emptyset}, v_{\{b\}}, v_{\{c\}}, v_{\{b,c\}}\}, \{v_{\{a\}}, v_{\{a,c\}}\}, \emptyset \rangle$$

C18. Critical Path Heuristics: Properties and Π^m Compilation

П^{*m*} Сотр

Π^m Compilation

Definition (Π^m)

Let $\Pi = \langle V, I, O, G \rangle$ be a STRIPS planning task. For $m \in \mathbb{N}_1$, the task Π^m is the STRIPS planning task $\langle V^m, I^m, O^m, G^m \rangle$, where $O^m = \{a_{o,S} \mid o \in O, S \subseteq V, |S| < m, S \cap (add(o) \cup del(o)) = \emptyset\}$ with

- $pre(a_{o,S}) = (pre(o) \cup S)^m$
- ▶ $add(a_{o,S}) = \{v_Y \mid Y \subseteq add(o) \cup S, |Y| \le m, Y \cap add(o) \neq \emptyset\}$
- $del(a_{o,S}) = \emptyset$
- $cost(a_{o,S}) = cost(o)$

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 21, 2016 14 / 21

C18. Critical Path Heuristics: Properties and Π^m Compilation

Π^m : Properties

Theorem $(h_{\Pi}^m = h_{\Pi^m}^{\max})$

Let Π be a STRIPS planning task and $m \in \mathbb{N}_1$. Then for each state s of Π it holds that $h_{\Pi}^m(s) = h_{\Pi^m}^{max}(s^m)$, where the subscript denotes on which task the heuritic is computed.

(Proof omitted.)

Theorem

There are STRIPS planning tasks Π , $m \in \mathbb{N}_1$ and admissible heuristics h such that $h_{\Pi}^*(s) < h_{\Pi^m}(s^m)$ for some state s of Π .

(Proof omitted.)

M. Helmert, G. Röger (Universität Basel)

November 21, 2016 17 / 21

C18. Critical Path Heuristics: Properties and Π^m Compilation

Summary

19 / 21

Summary

- \blacktriangleright h^m heuristics are best suited for backward search.
- \blacktriangleright h^m heuristics are safe, goal aware, consistent and admissible.

Planning and Optimization

• The Π^m compilation explicitly represents sets ($\hat{=}$ conjunctions) of variables as meta-variables.

 $\blacktriangleright h_{\Pi}^{m}(s) = h_{\Pi^{m}}^{\max}(s^{m})$

C18.3 Summ	ary		
M. Helmert, G. Röger (Universität Basel)	Planning and Optimization	November 21, 2016	18 / 21

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Summary

