Planning and Optimization C17. Critical Path Heuristics: h^m

Malte Helmert and Gabriele Röger

Universität Basel

November 21, 2016

Introduction
•0000000

Introduction

Planning Heuristics: Main Concepts

Major ideas for heuristics in the planning literature:

- delete relaxation ✓
- abstraction √
- critical paths ← this and next chapter
- landmarks
- network flows

Introduction

- ... we consider only STRIPS, and ...
- ... we focus on backward search and regression.

For a more convenient notation, we will use a different representation of STRIPS task...

Three differences:

Introduction

- Represent conjunctions of variables as sets of variables.
- Represent states as sets of the true variables.
- Use two sets to represent add and delete effects of operators separately.

STRIPS Operators in Set Representation

Previously, every STRIPS operator was of the form

$$\langle v_1 \wedge \cdots \wedge v_p, a_1 \wedge \cdots \wedge a_q \wedge \neg d_1 \wedge \cdots \wedge \neg d_r, c \rangle$$

where v_i , a_j , d_k are state variables and c is the cost.

- The same operator o in set representation is $\langle pre(o), add(o), del(o), cost(o) \rangle$, where
 - $pre(o) = \{v_1, \dots, v_p\}$ are the preconditions,
 - $add(o) = \{a_1, \ldots, a_q\}$ are the add effects,
 - $del(o) = \{d_1, \dots, d_r\}$ are the delete effects, and
 - cost(o) = c is the operator cost.

STRIPS Planning Tasks in Set Representation

A STRIPS planning task in set representation is given as a tuple $\langle V, I, O, G \rangle$, where

- V is a finite set of state variables,
- $I \subseteq V$ is the initial state,
- O is a finite set of STRIPS operators in set representation,
- $G \subseteq V$ is the goal.

Introduction 0000000

STRIPS Planning Tasks in Set Representation

A STRIPS planning task in set representation is given as a tuple $\langle V, I, O, G \rangle$, where

- V is a finite set of state variables,
- $I \subseteq V$ is the initial state,
- O is a finite set of STRIPS operators in set representation,
- $G \subseteq V$ is the goal.

The corresponding planning task in the previous notation is $\langle V, I', O', \gamma \rangle$, where

- $I'(v) = \mathbf{T}$ iff $v \in I$,
- $O' = \{ \langle \bigwedge_{v \in pre(o)} v, \bigwedge_{v \in add(o)} v \land \bigwedge_{v \in del(o)} \neg v, cost(o) \rangle \mid o \in O \},$
- $\gamma = \bigwedge_{v \in G} v$.

Reminder: STRIPS Regression

Definition (STRIPS Regression)

Let $\varphi = \varphi_1 \wedge \cdots \wedge \varphi_n$ be a conjunction of atoms, and let o be a STRIPS operator which adds the atoms a_1, \ldots, a_k and deletes the atoms d_1, \ldots, d_l . (W.l.o.g., $a_i \neq d_j$ for all i, j.)

The STRIPS regression of φ with respect to o is

$$sregr_o(\varphi) := \begin{cases} \bot & \text{if } \varphi_i = d_j \text{ for some } i, j \\ pre(o) \land \bigwedge(\{\varphi_1, \dots, \varphi_n\} \setminus \{a_1, \dots, a_k\}) & \text{otherwise} \end{cases}$$

Note: $sregr_o(\varphi)$ is again a conjunction of atoms, or \bot .

STRIPS Regression in Set Representation

Definition (STRIPS Regression)

Let A be a set of atoms, and let o be a STRIPS operator $o = \langle pre(o), add(o), del(o), cost(o) \rangle$. (W.l.o.g., $add(o) \cap del(o) = \emptyset$.)

The STRIPS regression of A with respect to o is

$$\mathit{sregr}_o(A) := egin{cases} ot & ext{if } A \cap \mathit{del}(o)
eq \emptyset \\ \mathit{pre}(o) \cup (A \setminus \mathit{add}(o)) & ext{otherwise} \end{cases}$$

Note: $sregr_o(A)$ is again a set of atoms, or \bot .

Perfect Regression Heuristic

Perfect Regression Heuristic

Definition (Perfect Regression Heuristic)

For a STRIPS planning task $\langle V, I, O, G \rangle$ the perfect regression heuristic r^* for state s and variable set $A \subseteq V$ is defined as the (point-wise) greatest fixed-point solution of the equations:

$$r^*(s,A) = 0$$
 if $A \subseteq s$ $r^*(s,A) = \min_{(B,o) \in R_O(A)} [cost(o) + r^*(s,B)]$ otherwise

$$R_O(A) = \{(B, o) \mid o \in O, B = sregr_o(A) \neq \bot\}$$

Perfect Regression Heuristic r^* vs. Perfect Heuristic h^*

Theorem

For a STRIPS planning task $\langle V, I, O, G \rangle$ it holds for each state s that $h^*(s) = r^*(s, G)$.

Intuition: We can extract a path from the operators in the minimizing pairs (B, o), starting from the goal.

 $\rightsquigarrow r^*$ cannot be computed efficiently.

Running Example

We will use the following running example throughout this chapter:

$$\Pi = \langle V, I, \{o_1, o_2, o_3\}, G \rangle \text{ with }$$

$$V = \{a, b, c\}$$

$$I = \{a\}$$

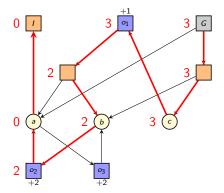
$$o_1 = \langle \{a, b\}, \{c\}, \{b\}, 1 \rangle$$

$$o_2 = \langle \{a\}, \{b\}, \{a\}, 2 \rangle$$

$$o_3 = \langle \{b\}, \{a\}, \emptyset, 2 \rangle$$

$$G = \{a, b, c\}$$

Optimal plan o_2 , o_3 , o_1 , o_2 , o_3 has cost 9.



The critical path justifies the heuristic estimate $h^{max}(I) = 3$

h^{max} as Critical Path Heuristic

Definition (h^{max} Heuristic)

For a STRIPS planning task $\langle V, I, O, G \rangle$ the heuristic h^{max} for state s and variable set $A \subseteq V$ is defined as the (point-wise) greatest fixed-point solution of $h^{\text{max}}(s,A) =$

$$\begin{cases} 0 & \text{if } A \subseteq s \\ \min_{(B,o) \in R_O(A)}[cost(o) + h^{\max}\langle s,B\rangle] & \text{if } |A| \le 1 \text{ and } A \not\subseteq s \\ \max_{v \in A} h^m(s,\{v\}) & \text{otherwise} \end{cases}$$

$$R_O(A) = \{ \langle B, o \rangle \mid o \in O, B = sregr_o(A) \neq \bot \}$$

Estimate $r^*(s, A)$ as cost of most expensive $v \in A$.

This definition specifies the same heuristic h^{max} as in the chapter on relaxation heuristics.

Critical Path Heuristics

Definition (h^m Heuristics)

For a STRIPS planning task $\langle V, I, O, G \rangle$ and $m \in \mathbb{N}$ the heuristic h^m for state s and variable set $A \subseteq V$ is defined as the (point-wise) greatest fixed-point solution of $h^m(s, A) =$

$$\begin{cases} 0 & \text{if } A \subseteq s \\ \min_{\langle B, o \rangle \in R_O(A)}[cost(o) + h^m(s, B)] & \text{if } |A| \le m \text{ and } A \not\subseteq s \\ \max_{B \subseteq A, 1 \le |B| \le m} h^m(s, B) & \text{otherwise} \end{cases}$$

$$R_O(A) = \{ \langle B, o \rangle \mid o \in O, B = sregr_o(A) \neq \bot \}$$

Estimate $r^*(s, A)$ as cost of most expensive $B \subseteq A$ with $|B| \le m$.

Computation

Critical Path Heuristics: Computation

Definition (h^m Heuristics)

For a STRIPS planning task $\langle V, I, O, G \rangle$ and $m \in \mathbb{N}$ the heuristic h^m for state s and variable set $A \subseteq V$ is defined as the (point-wise) greatest fixed-point solution of $h^m(s,A) = \begin{cases} 0 & \text{if } A \subseteq s \\ \min_{(B,o) \in R_O(A)}[cost(o) + h^m\langle s,B \rangle] & \text{if } |A| \leq m \text{ and } A \not\subseteq s \\ \max_{B \subseteq A,1 < |B| \le m} h^m(s,B) & \text{otherwise} \end{cases}$

$$R_O(A) = \{ \langle B, o \rangle \mid o \in O, B = sregr_o(A) \neq \bot \}$$

Cheap to evaluate given $h^m(s, B)$ for all $B \subseteq V$ with $1 \le |B| \le m$. We precompute these values.

h^m Precomputation (1)

For value m and state s of task with variables V and operators O

Computing h^m Values for Variable Sets up to Size m

$$S := \{A \subseteq V \mid |A| \le m\}$$

Associate a *cost* attribute with each set $A \in S$.

for all sets $A \in L$:

if $A \subseteq s$ then A.cost := 0

else $A.cost := \infty$

while no fixed point is reached:

Choose a variable set A from S.

 $newcost := min_{\langle B, o \rangle \in R_O(A)}[cost(o) + currentcost(B, S)]$

if *newcost* < *A.cost* **then** *A.cost* := *newcost*

currentcost(B,S)

if $|B| \le m$ then return B.cost else return $\max_{A \in S, A \subseteq B} A.cost$

- Fixed point reached $\Rightarrow A.cost = h^m(s, A)$ for all $A \in S$.
- Intuition:
 - cost values satisfy h^m equations, and
 - no larger values can satisfy the equations: initialized to ∞ and values are only reduced if it is otherwise impossible to satisfy an equation.

- Fixed point reached $\Rightarrow A.cost = h^m(s, A)$ for all $A \in S$.
- Intuition:
 - cost values satisfy h^m equations, and
 - no larger values can satisfy the equations: initialized to ∞ and values are only reduced if it is otherwise impossible to satisfy an equation.
- With suitable data structures, we can choose A in each iteration so that it directly gets assigned its final value (Generalized Dijkstra's algorithm).
- With such a strategy, the runtime is polynomial for fixed m.
- Runtime is exponential in $m \rightsquigarrow h^m$ typically used with $m \le 3$

$$R_{\{o_1,o_2,o_3\}}(\{a\}) = \{(\{a,b,c\},o_1),(\{b\},o_3)\}$$

$$R_{\{o_1,o_2,o_3\}}(\{b\}) = \{(\{a\},o_2),(\{b\},o_3)\}$$

$$R_{\{o_1,o_2,o_3\}}(\{c\}) = \{(\{a,b\},o_1),(\{a,c\},o_2),(\{b,c\},o_3)\}$$

$$R_{\{o_1,o_2,o_3\}}(\{a\}) = \{(\{a,b,c\},o_1),(\{b\},o_3)\}$$

$$R_{\{o_1,o_2,o_3\}}(\{b\}) = \{(\{a\},o_2),(\{b\},o_3)\}$$

$$R_{\{o_1,o_2,o_3\}}(\{c\}) = \{(\{a,b\},o_1),(\{a,c\},o_2),(\{b,c\},o_3)\}$$

$$\begin{array}{c|cccc}
 & \{a\} & \{b\} & \{c\} \\
\hline
 & cost & 0 & \infty & \infty
\end{array}$$

 $\{b\}: \min\{2+\{a\}.cost, 2+\{b\}.cost\} = 2$

$$R_{\{o_1,o_2,o_3\}}(\{a\}) = \{(\{a,b,c\},o_1),(\{b\},o_3)\}$$

$$R_{\{o_1,o_2,o_3\}}(\{b\}) = \{(\{a\},o_2),(\{b\},o_3)\}$$

$$R_{\{o_1,o_2,o_3\}}(\{c\}) = \{(\{a,b\},o_1),(\{a,c\},o_2),(\{b,c\},o_3)\}$$

$$\begin{array}{c|cccc} & \{a\} & \{b\} & \{c\} \\ \hline cost & 0 & 2 & \infty \end{array}$$

{b}:
$$\min\{2 + \{a\}.cost, 2 + \{b\}.cost\} = 2$$

{c}: $\min\{1 + \max\{\{a\}.cost, \{b\}.cost\},$
 $2 + \max\{\{a\}.cost, \{c\}.cost\},$
 $2 + \max\{\{b\}.cost, \{c\}.cost\}\} = 3$

$$R_{\{o_1,o_2,o_3\}}(\{a\}) = \{(\{a,b,c\},o_1),(\{b\},o_3)\}$$

$$R_{\{o_1,o_2,o_3\}}(\{b\}) = \{(\{a\},o_2),(\{b\},o_3)\}$$

$$R_{\{o_1,o_2,o_3\}}(\{c\}) = \{(\{a,b\},o_1),(\{a,c\},o_2),(\{b,c\},o_3)\}$$

$$\begin{array}{c|cccc} & \{a\} & \{b\} & \{c\} \\ \hline cost & 0 & 2 & 3 \end{array}$$

{b}:
$$\min\{2 + \{a\}.cost, 2 + \{b\}.cost\} = 2$$

{c}: $\min\{1 + \max\{\{a\}.cost, \{b\}.cost\},$
 $2 + \max\{\{a\}.cost, \{c\}.cost\},$
 $2 + \max\{\{b\}.cost, \{c\}.cost\}\} = 3$

$$\begin{array}{c|cccc} & \{a\} & \{b\} & \{c\} \\ \hline cost & 0 & 2 & 3 \end{array}$$

{b}:
$$\min\{2 + \{a\}.cost, 2 + \{b\}.cost\} = 2$$

{c}: $\min\{1 + \max\{\{a\}.cost, \{b\}.cost\},$
 $2 + \max\{\{a\}.cost, \{c\}.cost\},$
 $2 + \max\{\{b\}.cost, \{c\}.cost\}\} = 3$

Fixed point reached

$$\begin{array}{c|cccc} & \{a\} & \{b\} & \{c\} \\ \hline cost & 0 & 2 & 3 \end{array}$$

{b}:
$$\min\{2 + \{a\}.cost, 2 + \{b\}.cost\} = 2$$

{c}: $\min\{1 + \max\{\{a\}.cost, \{b\}.cost\},$
 $2 + \max\{\{a\}.cost, \{c\}.cost\},$
 $2 + \max\{\{b\}.cost, \{c\}.cost\}\} = 3$

Fixed point reached

$$h^{1}(I, \{a, b, c\}) = \max\{h^{1}(I, \{a\}), h^{1}(I, \{b\}), h^{1}(I, \{c\})\}$$
$$= \max\{0, 2, 3\} = 3$$

$$\{b\}: \min\{2+\{a\}.cost, 2+\{b\}.cost\} = 2$$

$$\{b\}$$
: min $\{2 + \{a\}.cost, 2 + \{b\}.cost\} = 2$
 $\{a, b\}$: min $\{2 + \{b\}.cost\} = 4$

```
{b}: \min\{2 + \{a\}.cost, 2 + \{b\}.cost\} = 2
{a, b}: \min\{2 + \{b\}.cost\} = 4
{c}: \min\{1 + \{a, b\}.cost, 2 + \{a, c\}.cost, 2 + \{b, c\}.cost\} = 5
```

```
{b}: \min\{2 + \{a\}.cost, 2 + \{b\}.cost\} = 2

{a, b}: \min\{2 + \{b\}.cost\} = 4

{c}: \min\{1 + \{a, b\}.cost, 2 + \{a, c\}.cost, 2 + \{b, c\}.cost\} = 5

{a, c}: \min\{1 + \{a, b\}.cost, 2 + \{b, c\}.cost\} = 5
```

```
{b}: \min\{2 + \{a\}.cost, 2 + \{b\}.cost\} = 2

{a, b}: \min\{2 + \{b\}.cost\} = 4

{c}: \min\{1 + \{a, b\}.cost, 2 + \{a, c\}.cost, 2 + \{b, c\}.cost\} = 5

{a, c}: \min\{1 + \{a, b\}.cost, 2 + \{b, c\}.cost\} = 5

{b, c}: \min\{2 + \{a, c\}.cost, 2 + \{b, c\}.cost\} = 7
```

```
 \begin{array}{ll} \{b\} \colon & \min\{2+\{a\}.cost,2+\{b\}.cost\} = 2 \\ \{a,b\} \colon & \min\{2+\{b\}.cost\} = 4 \\ \{c\} \colon & \min\{1+\{a,b\}.cost,2+\{a,c\}.cost,2+\{b,c\}.cost\} = 5 \\ \{a,c\} \colon & \min\{1+\{a,b\}.cost,2+\{b,c\}.cost\} = 5 \\ \{b,c\} \colon & \min\{2+\{a,c\}.cost,2+\{b,c\}.cost\} = 7 \end{array}
```

$$h^{2}(I, \{a, b, c\}) = \max\{h^{2}(I, \{a\}), h^{2}(I, \{b\}), h^{2}(I, \{c\})\}\}$$

$$h^{2}(I, \{a, b\}), h^{2}(I, \{a, c\}), h^{2}(I, \{b, c\})\}$$

$$= \max\{0, 2, 5, 4, 5, 7\} = 7$$

Summary

- Critical path heuristic h^m estimates the cost of reaching a set (\(\hat{\pi}\) conjunction) of variables as the cost of reaching the most expensive subset of size at most m.
- h^m computation is polynomial for fixed m.
- h^m computation is exponential in m.
- In practice, we use $m \in \{1, 2, 3\}$.