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Generic Algorithm Template

Generic Abstraction Computation Algorithm

abs := {T π{v} | v ∈ V }
while abs contains more than one abstract transition system:

select A1, A2 from abs
shrink A1 and/or A2 until size(A1) · size(A2) ≤ N
abs := abs \ {A1,A2} ∪ {A1 ⊗A2}

return the remaining abstract transition system in abs

Remaining questions:

I Which abstractions to select?  merging strategy

I How to shrink an abstraction?  shrinking strategy

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 4 / 42



C16. M&S: Strategies and Label Reduction Merging Strategies

C16.2 Merging Strategies
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Linear Merging Strategies

Linear Merging Strategy

In each iteration after the first, choose the abstraction computed
in the previous iteration as A1.

Rationale: only maintains one “complex” abstraction at a time

 Fully defined by an ordering of atomic projections.
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Linear Merging Strategies: Choosing the Ordering

Use similar causal graph criteria as for growing patterns.

Example: Strategy of hHHH

hHHH: Ordering of atomic projections

I Start with a goal variable.

I Add variables that appear in preconditions of operators
affecting previous variables.

I If that is not possible, add a goal variable.

Rationale: increases h quickly
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Non-linear Merging Strategies

I Non-linear merging strategies only recently gained more
interest in the planning community.

I One reason: Better label reduction techniques (later in this
chapter) enabled a more efficient computation.

I Examples:
I DFP: preferrably merge transition systems that must

synchronize on labels that occur close to a goal state.
I UMC and MIASM: Build clusters of variables with strong

interactions and first merge variables within each cluster.

I Each merge-and-shrink heuristic computed with a non-linear
merging strategy can also be computed with a linear merging
strategy.

I However, linear merging can require a super-polynomial
blow-up of the final representation size.
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C16.3 Shrinking Strategies
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Shrinking strategies

How to shrink an abstraction?

We cover two common approaches:

I f -preserving shrinking

I bisimulation-based shrinking
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f -preserving Shrinking Strategy

f -preserving Shrinking Strategy

Repeatedly combine abstract states with
identical abstract goal distances (h values) and
identical abstract initial state distances (g values).

Rationale: preserves heuristic value and overall graph shape

Tie-breaking Criterion

Prefer combining states where g + h is high.
In case of ties, combine states where h is high.

Rationale: states with high g + h values are less likely to be
explored by A∗, so inaccuracies there matter less
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Bisimulation

Definition (Bisimulation)

Let T = 〈S , L, c,T , s0,S?〉 be a transition system. An equivalence
relation ∼ on S is a bisimulation for T if for every 〈s, `, s ′〉 ∈ T
and every t ∼ s there is a transition 〈t, `, t ′〉 ∈ T with t ′ ∼ s ′.

A bisimulation ∼ is goal-respecting if s ∼ t implies that either
s, t ∈ S? or s, t 6∈ S?.
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Bisimulation: Example
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∼ with equivalence classes
{{1, 2, 5}, {3, 4}} is a
goal-respecting
bisimulation.
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Bisimulations as Abstractions

Theorem (Bisimulations as Abstractions)

Let T = 〈S , L, c ,T , s0, S?〉 be a transition system and ∼ be a
bisimulation for T . Then α∼ : S → {[s]∼ | s ∈ S} with
α∼(s) = [s]∼ is an abstraction of T .

Note: [s]∼ denotes the equivalence class of s.

Note: Surjectivity follows from the definition of the codomain
Note: as the image of α∼.
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Abstractions as Bisimulations

Definition (Abstraction as Bisimulation)

Let T = 〈S , L, c ,T , s0, S?〉 be a transition system and α : S → S ′

be an abstraction of T . The abstraction induces the equivalence
relation ∼α as s ∼α t iff α(s) = α(t).
We say that α is a (goal-respecting) bisimulation for T if ∼α is a
(goal-respecting) bisimulation for T .
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Abstraction as Bisimulations: Example

Abstraction α with
α(1) = α(2) = α(5) = A and α(3) = α(4) = B
is a goal-respecting bisimulation for T .
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Goal-respecting Bisimulations are Exact (1)

Theorem

Let X be a collection of transition systems. Let α be an
abstraction for Ti ∈ X . If α is a goal-respecting bisimulation then
the transformation from X to X ′ := (X \ {Ti}) ∪ {T αi } is exact.

Proof.

Let TX = T1 ⊗ · · · ⊗ Tn = 〈S , L, c,T , s0, S?〉 and w.l.o.g.
TX ′ = T1⊗· · ·⊗Ti−1⊗T αi ⊗Ti+1⊗· · ·⊗Tn = 〈S ′, L′, c ′,T ′, s ′0, S ′?〉.
Consider σ(〈s1, . . . , sn〉) = 〈s1, . . . , si−1, α(si ), si+1, . . . , sn〉 for the
mapping of states and τ = id for the mapping of labels.

1 Mappings σ and τ satisfy the requirements of safe
transformations because α is an abstraction and we have
chosen the mapping functions as before.

. . .
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Goal-respecting Bisimulations are Exact (2)

Proof (continued).

2 If 〈s ′, `, t ′〉 ∈ T ′ with s ′ = 〈s ′1, . . . , s ′n〉 and t ′ = 〈t ′1, . . . , t ′n〉,
then for j 6= i transition system Tj has transition 〈s ′j , `, t ′j 〉 (*)
and T αi has transition 〈s ′i , `, t ′i 〉. This implies that Ti has a
transition 〈s ′′i , `, t ′′i 〉 for some s ′′i ∈ α−1(s ′i ) and t ′′i ∈ α−1(t ′i ).
As α is a bisimulation, there must be such a transition for all
such s ′′i and t ′′i (**).
Each s ∈ σ−1(s ′) has the form s = 〈s1, . . . , sn〉 with sj = s ′j
for j 6= i and si ∈ α−1(s ′i ). Analogously for each
t = 〈t1, . . . , tn〉 ∈ σ−1(t ′). From (*) and (**) follows that Tj
has a transition 〈sj , `, tj〉 for all j ∈ {1, . . . , n}, so for each
such s and t, T contains the transition 〈s, `, t〉.

. . .
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Goal-respecting Bisimulations are Exact (3)

Proof (continued).

3 For s ′? = 〈s ′1, . . . , s ′n〉 ∈ S ′?, each s ′j with j 6= i must be a goal
state of Tj (*) and s ′i must be a goal state of T αi . The latter
implies that at least on s ′′i ∈ α−1(s ′i ) is a goal state of Ti . As
α is goal-respecting, all states from α−1(s ′i ) are goal states of
Ti (**).
Consider s? = 〈s1, . . . , sn〉 ∈ σ−1(s ′?). By the definition of σ,
sj = s ′j for j 6= i and si ∈ α−1(s ′i ). From (*) and (**), each sj
(j ∈ {1, . . . , n}) is a goal state of Tj and, hence, s? a goal
state of TX .

4 As τ = id and the transformation does not change the label
cost function, c(`) = c ′(τ(`)) for all ` ∈ L.
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Bisimulations: Discussion

I As all bisimulations preserve all relevant information, we are
interested in the coarsest such abstraction (to shrink as much
as possible).

I There is always a unique coarsest bisimulation for T and it
can be computed efficiently (from the explicit representation).

I In some cases, computing the bisimulation is still too
expensive or it cannot sufficiently shrink a transition system.
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Greedy Bisimulations

Definition (Greedy Bisimulation)

Let T = 〈S , L, c ,T , s0,S?〉 be a transition system. An equivalence
relation ∼ on S is a greedy bisimulation for T if it is a bisimulation
for the system 〈S , L, c ,TG , s0,S?〉, where
TG = {〈s, `, t〉 | 〈s, `, t〉 ∈ T , h∗(s) = h∗(t) + c(`)}.

Greedy bisimulation only considers transitions that are used in an
optimal solution of some state of T .
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Greedy Bisimulation is h-preserving

Theorem

Let T be a transition system and let α be an abstraction of T . If
∼α is a goal-respecting greedy bisimulation for T then h∗T α = h∗T .

(Proof omitted.)

Note: This does not mean that replacing T with T α in a collection
of transition systems is a safe transformation! Abstraction α
preserves solution costs “locally” but not “globally”.
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C16.4 Label Reduction
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Label Reduction: Motivation (1)
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Whenever there is a transition with label o ′ there is also a
transition with label o. If o ′ is not cheaper than o, we can always
use the transition with o.

Idea: Replace o and o ′ with label o ′′ with cost of o
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Label Reduction: Motivation (2)
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States s and t are not bisimilar due to labels p and p′. In T ′ they
label the same (parallel) transitions. If p and p′ have the same
cost, in such a situation there is no need for distinguishing them.

Idea: Replace p and p′ with label p′′ with same cost.
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Label Reduction: Motivation (3)
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Label reductions reduce the time and memory requirement for
merge and shrink steps and enable coarser bisimulation
abstractions.

When is label reduction a safe transformation?
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Label Reduction: Definition

Definition (Label Reduction)

Let X be a collection of transition systems with label set L and
label cost function c . A label reduction 〈τ, c ′〉 for X is given by a
function τ : L→ L′, where L′ is an arbitrary set of labels, and a
label cost function c ′ on L′ such that for all ` ∈ L, c ′(τ(`)) ≤ c(`).

For T = 〈S , L, c,T , s0, S?〉 ∈ X the label-reduced transition system
is T 〈τ,c ′〉 = 〈S , L′, c ′, {〈s, τ(`), t〉 | 〈s, `, t〉 ∈ T}, s0,S?〉.

The label-reduced collection is X 〈τ,c
′〉 = {T 〈τ,c ′〉 | T ∈ X}.

L′ ∩ L 6= ∅ and L′ = L are allowed.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 27 / 42

C16. M&S: Strategies and Label Reduction Label Reduction

Label Reduction is Safe (1)

Theorem (Label Reduction is Safe)

Let X be a collection of transition systems and 〈τ, c ′〉 be a
label-reduction for X . The transformation from X to X 〈τ,c

′〉 is safe.

Proof.

We show that the transformation is safe, using σ = id for the
mapping of states and τ for the mapping of labels.

The label set of TX 〈τ,c′〉 corresponds to the image of τ by the

definition of X 〈τ,c
′〉 and TX 〈τ,c′〉 .

The label cost function of TX 〈τ,c′〉 is c ′ and has the required
property by the definition of label reduction. . . .
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Label Reduction is Safe (2)

Theorem (Label Reduction is Safe)

Let X be a collection of transition systems and 〈τ, c ′〉 be a
label-reduction for X . The transformation from X to X 〈τ,c

′〉 is safe.

Proof (continued).

By the definition of synchronized products, TX has a transition
〈〈s1, . . . , s|X |〉, `, 〈t1, . . . , t|X |〉〉 if for all i , Ti ∈ X has a transition
〈si , `, ti 〉. By the definition of label-reduced transition systems, this
implies that T 〈τ,c ′〉 has a corresponding transition 〈si , τ(`), ti 〉, so
TX 〈τ,c′〉 has a transition 〈s, τ(`), t〉 = 〈σ(s), τ(`), σ(t)〉 (definition
of synchronized products).

For each goal state s? of TX , state σ(s?) = s? is a goal state of
TX 〈τ,c′〉 because the transformation replaces each transition system
with a system that has the same goal states.
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More Terminology

Let X be a collection of transition systems with labels L. Let
`, `′ ∈ L be labels and let T ∈ X .

I Label ` is alive in X if all T ′ ∈ X have some transition
labelled with `. Otherwise, ` is dead.

I Label ` locally subsumes label `′ in T if for all transitions
〈s, `′, t〉 of T there is also a transition 〈s, `, t〉 in T .

I ` globally subsumes `′ if it locally subsumes `′ in all T ′ ∈ X .

I ` and `′ are locally equivalent in T if they label the same
transitions in T , i.e. ` locally subsumes `′ in T and vice versa.

I ` and `′ are T -combinable if they are locally equivalent in all
transition systems T ′ ∈ X \ {T }.
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Exact Label Reduction

Theorem (Criteria for Exact Label Reduction)

Let X be a collection of transition systems with cost function c
and label set L that contains no dead labels.

Let 〈τ, c ′〉 be a label-reduction for X such that τ combines labels
`1 and `2 and leaves other labels unchanged. The transformation
from X to X 〈τ,c

′〉 is exact iff c(`1) = c(`2), c ′(τ(`)) = c(`) for all
` ∈ L, and

I `1 globally subsumes `2, or

I `2 globally subsumes `1, or

I `1 and `2 are T -combinable for some T ∈ X .

(Proof omitted.)
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Back to Example (1)
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Label o ′ globally subsumes label o.
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Back to Example (2)
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Labels p and p′ are T -combinable.
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Computation of Exact Label Reduction (1)

I For given labels `1, `2, the criteria can be tested in low-order
polynomial time.

I Finding globally subsumed labels involves finding subset
relationsships in a set family.
 no linear-time algorithms known

I The following algorithm exploits only T -combinability.
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Computation of Exact Label Reduction (2)

eqi := set of label equivalence classes of Ti ∈ X

Label-reduction based on Ti -combinability

eq := {L}
for j ∈ {1, . . . , |X |} \ {i}

Refine eq with eqj

// two labels are in the same set of eq
// iff they are locally equivalent in all Tj 6= Ti .
τ = id
for B ∈ eq

samecost := {[`]∼c | ` ∈ B, `′ ∼c `
′′ iff c(`′) = c(`′′)}

for L′ ∈ samecost
`new := new label
c ′(`new) := cost of labels in L′

for ` ∈ L′

τ(`) = `new
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Application in Merge-and-Shrink Algorithm

Generic Abstraction Computation Algorithm with Label Reduction

abs := {T π{v} | v ∈ V }
while abs contains more than one abstract transition system:

select T1, T2 from abs
possibly label-reduce all T ∈ abs

(e.g. based on T1- and/or T2-combinability).
shrink T1 and/or T2 until size(T1) · size(T2) ≤ N
possibly label-reduce all T ∈ abs
abs := abs \ {T1, T2} ∪ {T1 ⊗ T2}

return the remaining abstract transition system in abs
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C16.5 Summary
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Summary

I There is a wide range of merging and shrinking strategies. We
only covered some important ones.

I Bisimulation is an exact shrinking method.

I Label reduction is crucial for the performance of the
merge-and-shrink algorithm, especially when using bisimilarity
for shrinking.
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C16.6 Literature
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Literature (1)

References on merge-and-shrink abstractions:
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Directed Model Checking with Distance-Preserving
Abstractions.
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Introduces merge-and-shrink abstractions (for model-checking)
and DFP merging strategy.

Malte Helmert, Patrik Haslum and Jörg Hoffmann.
Flexible Abstraction Heuristics for Optimal Sequential
Planning.
Proc. ICAPS 2007, pp. 176–183, 2007.
Introduces merge-and-shrink abstractions for planning.
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Literature (2)
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Computing Perfect Heuristics in Polynomial Time: On
Bisimulation and Merge-and-Shrink Abstractions in Optimal
Planning.
Proc. IJCAI 2011, pp. 1983–1990, 2011.
Introduces bisimulation-based shrinking.

Malte Helmert, Patrik Haslum, Jörg Hoffmann and Raz
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Merge-and-Shrink Abstraction: A Method for Generating
Lower Bounds in Factored State Spaces.
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Literature (3)

Silvan Sievers, Martin Wehrle and Malte Helmert.
Generalized Label Reduction for Merge-and-Shrink Heuristics.
Proc. AAAI 2014, pp. 2358–2366, 2014.
Introduces label reduction as covered in these slides
(there has been a more complicated version before).
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Non-linear merging strategies for merge-and-shrink based on
variable interactions.
Proc. AAAI 2014, pp. 2358–2366, 2014.
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