

Malte Helmert and Gabriele Röger

Universität Basel

November 17, 2016

Planning and Optimization

C16. M&S: Strategies and Label Reduction

M. Helmert, G. Röger (Universität Basel)

Motivation

1 / 42

M.

November 17, 2016

C16.1 Motivation

Planning and Optimization November 17, 2016 — C16. M&S: Strategies and Label Reduction

C16.1	Motivation			
C16.2	C16.2 Merging Strategies			
C16.3	C16.3 Shrinking Strategies			
C16.4	Label Reduct	ion		
C16.5	Summary			
C16.6	Literature			
Helmert, G. Röger	(Universität Basel)	Planning and Optimization	November 17, 2016	2 / 42

C16. M&S: Strategies and Label Reduction Template Generic Algorithm Template Generic Abstraction Computation Algorithm $abs := \{T^{\pi_{\{v\}}} \mid v \in V\}$ while abs contains more than one abstract transition system: $select A_1, A_2$ from abs $shrink A_1$ and/or A_2 until $size(A_1) \cdot size(A_2) \leq N$ $abs := abs \setminus \{A_1, A_2\} \cup \{A_1 \otimes A_2\}$ return the remaining abstract transition system in absRemaining questions: • Which abstractions to select? \rightsquigarrow merging strategy • How to shrink an abstraction? \rightsquigarrow shrinking strategy

5 / 42

Merging Strategies

C16.2 Merging Strategies

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization November 17, 2016

C16. M&S: Strategies and Label Reduction

Linear Merging Strategies: Choosing the Ordering

Use similar causal graph criteria as for growing patterns.

Example: Strategy of h_{HHH}

*h*_{HHH}: Ordering of atomic projections

- Start with a goal variable.
- Add variables that appear in preconditions of operators affecting previous variables.
- If that is not possible, add a goal variable.

Rationale: increases h quickly

Linear Merging Strategies

Linear Merging Strategy

In each iteration after the first, choose the abstraction computed in the previous iteration as \mathcal{A}_1 .

Rationale: only maintains one "complex" abstraction at a time

 \rightsquigarrow Fully defined by an ordering of atomic projections.

M. Helmert, G. Röger (Universität Basel)

November 17, 2016

C16. M&S: Strategies and Label Reduction Non-linear Merging Strategies

- Non-linear merging strategies only recently gained more interest in the planning community.
- One reason: Better label reduction techniques (later in this chapter) enabled a more efficient computation.

Planning and Optimization

- Examples:
 - DFP: preferrably merge transition systems that must synchronize on labels that occur close to a goal state.
 - UMC and MIASM: Build clusters of variables with strong interactions and first merge variables within each cluster.
- Each merge-and-shrink heuristic computed with a non-linear merging strategy can also be computed with a linear merging strategy.
- However, linear merging can require a super-polynomial blow-up of the final representation size.

Planning and Optimization

6 / 42

Merging Strategies

9 / 42

Shrinking Strategies

C16.3 Shrinking Strategies

M. Helmert, G. Röger (Universität Basel)

November 17, 2016

C16. M&S: Strategies and Label Reduction

f-preserving Shrinking Strategy *f*-preserving Shrinking Strategy Repeatedly combine abstract states with identical abstract goal distances (h values) and identical abstract initial state distances (g values). Rationale: preserves heuristic value and overall graph shape **Tie-breaking Criterion** Prefer combining states where g + h is high. In case of ties, combine states where h is high. Rationale: states with high g + h values are less likely to be explored by A*, so inaccuracies there matter less

Planning and Optimization

Planning and Optimization

C16. M&S: Strategies and Label Reduction

Shrinking strategies

Bisimulation: Example

Shrinking Strategies

Bisimulations as Abstractions

Shrinking Strategies

Theorem (Bisimulations as Abstractions)

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$ be a transition system and \sim be a bisimulation for \mathcal{T} . Then $\alpha_{\sim} : S \to \{[s]_{\sim} \mid s \in S\}$ with $\alpha_{\sim}(s) = [s]_{\sim}$ is an abstraction of \mathcal{T} .

Note: $[s]_{\sim}$ denotes the equivalence class of *s*. Note: Surjectivity follows from the definition of the codomain as the image of α_{\sim} .

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

November 17, 2016

14 / 42

Definition (Abstraction as Bisimulation)

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$ be a transition system and $\alpha : S \to S'$ be an abstraction of \mathcal{T} . The abstraction induces the equivalence relation \sim_{α} as $s \sim_{\alpha} t$ iff $\alpha(s) = \alpha(t)$. We say that α is a (goal-respecting) bisimulation for \mathcal{T} if \sim_{α} is a (goal-respecting) bisimulation for \mathcal{T} .

M. Helmert, G. Röger (Universität Basel)

C16. M&S: Strategies and Label Reduction

Shrinking Strategie

Goal-respecting Bisimulations are Exact (1)

Theorem

Let X be a collection of transition systems. Let α be an abstraction for $\mathcal{T}_i \in X$. If α is a goal-respecting bisimulation then the transformation from X to $X' := (X \setminus \{\mathcal{T}_i\}) \cup \{\mathcal{T}_i^{\alpha}\}$ is exact.

Proof.

Let $\mathcal{T}_{X} = \mathcal{T}_{1} \otimes \cdots \otimes \mathcal{T}_{n} = \langle S, L, c, T, s_{0}, S_{\star} \rangle$ and w.l.o.g. $\mathcal{T}_{X'} = \mathcal{T}_1 \otimes \cdots \otimes \mathcal{T}_{i-1} \otimes \mathcal{T}_i^{\alpha} \otimes \mathcal{T}_{i+1} \otimes \cdots \otimes \mathcal{T}_n = \langle S', L', c', T', s'_0, S'_+ \rangle.$ Consider $\sigma(\langle s_1, \ldots, s_n \rangle) = \langle s_1, \ldots, s_{i-1}, \alpha(s_i), s_{i+1}, \ldots, s_n \rangle$ for the mapping of states and $\tau = id$ for the mapping of labels.

() Mappings σ and τ satisfy the requirements of safe transformations because α is an abstraction and we have chosen the mapping functions as before.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

C16. M&S: Strategies and Label Reduction

Shrinking Strategies

19 / 42

17 / 42

November 17, 2016

```
Goal-respecting Bisimulations are Exact (3)
```

Proof (continued).

• For $s'_{\star} = \langle s'_1, \ldots, s'_n \rangle \in S'_{\star}$, each s'_i with $j \neq i$ must be a goal state of \mathcal{T}_i (*) and s'_i must be a goal state of \mathcal{T}_i^{α} . The latter implies that at least on $s''_i \in \alpha^{-1}(s'_i)$ is a goal state of \mathcal{T}_i . As α is goal-respecting, all states from $\alpha^{-1}(s'_i)$ are goal states of \mathcal{T}_i (**).

Consider $s_{\star} = \langle s_1, \ldots, s_n \rangle \in \sigma^{-1}(s'_{\star})$. By the definition of σ , $s_i = s'_i$ for $j \neq i$ and $s_i \in \alpha^{-1}(s'_i)$. From (*) and (**), each s_i $(i \in \{1, \ldots, n\})$ is a goal state of \mathcal{T}_i and, hence, s_* a goal state of \mathcal{T}_X .

4 As $\tau = id$ and the transformation does not change the label cost function, $c(\ell) = c'(\tau(\ell))$ for all $\ell \in L$.

Goal-respecting Bisimulations are Exact (2)

Proof (continued).

2	If $\langle s',\ell,t' angle\in T'$ with $s'=\langle s'_1,\ldots,s'_n angle$ and $t'=\langle t'_1,\ldots,t'_n angle$,
	then for $j \neq i$ transition system \mathcal{T}_i has transition $\langle s'_i, \ell, t'_i \rangle$ (*)
	and \mathcal{T}^{lpha}_i has transition $\langle s'_i, \ell, t'_i angle$. This implies that \mathcal{T}_i has a
	transition $\langle s''_i, \ell, t''_i \rangle$ for some $s''_i \in \alpha^{-1}(s'_i)$ and $t''_i \in \alpha^{-1}(t'_i)$.
	As α is a bisimulation, there must be such a transition for <i>all</i>
	such s_i'' and t_i'' (**).
	Each $s \in \sigma^{-1}(s')$ has the form $s = \langle s_1, \ldots, s_n \rangle$ with $s_j = s'_j$
	for $j \neq i$ and $s_i \in \alpha^{-1}(s'_i)$. Analogously for each
	$t = \langle t_1, \ldots, t_n \rangle \in \sigma^{-1}(t')$. From (*) and (**) follows that \mathcal{T}_i
	has a transition $\langle s_i, \ell, t_i \rangle$ for all $j \in \{1, \dots, n\}$, so for each
	such s and t, T contains the transition $\langle s, \ell, t \rangle$.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

November 17, 2016

Greedy Bisimulations

Definition (Greedy Bisimulation)

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$ be a transition system. An equivalence relation \sim on S is a greedy bisimulation for \mathcal{T} if it is a bisimulation for the system $\langle S, L, c, T^G, s_0, S_* \rangle$, where $T^G = \{ \langle s, \ell, t \rangle \mid \langle s, \ell, t \rangle \in T, h^*(s) = h^*(t) + c(\ell) \}.$

Greedy bisimulation only considers transitions that are used in an optimal solution of some state of \mathcal{T} .

Planning and Optimization

C16. M&S: Strategies and Label Reduction

M. Helmert, G. Röger (Universität Basel)

Label Reduction

21 / 42

November 17, 2016

C16.4 Label Reduction

Greedy Bisimulation is *h*-preserving

Theorem

Let \mathcal{T} be a transition system and let α be an abstraction of \mathcal{T} . If \sim_{α} is a goal-respecting greedy bisimulation for \mathcal{T} then $h_{\mathcal{T}^{\alpha}}^* = h_{\mathcal{T}}^*$.

(Proof omitted.)

Note: This does not mean that replacing \mathcal{T} with \mathcal{T}^{α} in a collection of transition systems is a safe transformation! Abstraction α preserves solution costs "locally" but not "globally".

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Planning and Optimization

November 17, 2016

22 / 42

24 / 42

Shrinking Strategies

Label Reduction: Definition

Definition (Label Reduction)

Let X be a collection of transition systems with label set L and label cost function c. A label reduction $\langle \tau, c' \rangle$ for X is given by a function $\tau : L \to L'$, where L' is an arbitrary set of labels, and a label cost function c' on L' such that for all $\ell \in L$, $c'(\tau(\ell)) \leq c(\ell)$.

For $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle \in X$ the label-reduced transition system is $\mathcal{T}^{\langle \tau, c' \rangle} = \langle S, L', c', \{ \langle s, \tau(\ell), t \rangle \mid \langle s, \ell, t \rangle \in T \}, s_0, S_{\star} \rangle.$

The label-reduced collection is $X^{\langle \tau, c' \rangle} = \{ \mathcal{T}^{\langle \tau, c' \rangle} \mid \mathcal{T} \in X \}.$

 $L' \cap L \neq \emptyset$ and L' = L are allowed.

C16. M&S: Strategies and Label Reduction Label Reduction is Safe (1) Label Reduction

. . .

28 / 42

Theorem (Label Reduction is Safe)

Let X be a collection of transition systems and $\langle \tau, c' \rangle$ be a label-reduction for X. The transformation from X to $X^{\langle \tau, c' \rangle}$ is safe.

Proof.

We show that the transformation is safe, using $\sigma = \text{id}$ for the mapping of states and τ for the mapping of labels.

The label set of $\mathcal{T}_{\chi\langle \tau, c'\rangle}$ corresponds to the image of τ by the definition of $X^{\langle \tau, c'\rangle}$ and $\mathcal{T}_{\chi\langle \tau, c'\rangle}$.

The label cost function of $\mathcal{T}_{X^{\langle \tau, c' \rangle}}$ is c' and has the required property by the definition of label reduction.

Planning and Optimization

Label Reduction is Safe (2)

Theorem (Label Reduction is Safe)

Let X be a collection of transition systems and $\langle \tau, c' \rangle$ be a label-reduction for X. The transformation from X to $X^{\langle \tau, c' \rangle}$ is safe.

Proof (continued).

By the definition of synchronized products, \mathcal{T}_X has a transition $\langle \langle s_1, \ldots, s_{|X|} \rangle, \ell, \langle t_1, \ldots, t_{|X|} \rangle \rangle$ if for all $i, \mathcal{T}_i \in X$ has a transition $\langle s_i, \ell, t_i \rangle$. By the definition of label-reduced transition systems, this implies that $\mathcal{T}^{\langle \tau, c' \rangle}$ has a corresponding transition $\langle s_i, \tau(\ell), t_i \rangle$, so $\mathcal{T}_{X^{\langle \tau, c' \rangle}}$ has a transition $\langle s, \tau(\ell), t \rangle = \langle \sigma(s), \tau(\ell), \sigma(t) \rangle$ (definition of synchronized products).

For each goal state s_{\star} of \mathcal{T}_X , state $\sigma(s_{\star}) = s_{\star}$ is a goal state of $\mathcal{T}_{X^{\langle \tau, c' \rangle}}$ because the transformation replaces each transition system with a system that has the same goal states.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

November 17, 2016 29 / 42

Label Reduction

Label Reduction

C16. M&S: Strategies and Label Reduction

Exact Label Reduction

Theorem (Criteria for Exact Label Reduction)

Let X be a collection of transition systems with cost function c and label set L that contains no dead labels.

Let $\langle \tau, c' \rangle$ be a label-reduction for X such that τ combines labels ℓ_1 and ℓ_2 and leaves other labels unchanged. The transformation from X to $X^{\langle \tau, c' \rangle}$ is exact iff $c(\ell_1) = c(\ell_2)$, $c'(\tau(\ell)) = c(\ell)$ for all $\ell \in L$, and

- ℓ_1 globally subsumes ℓ_2 , or
- ℓ_2 globally subsumes ℓ_1 , or
- ℓ_1 and ℓ_2 are \mathcal{T} -combinable for some $\mathcal{T} \in X$.

(Proof omitted.)

More Terminology

Let X be a collection of transition systems with labels L. Let $\ell, \ell' \in L$ be labels and let $\mathcal{T} \in X$.

- Label ℓ is alive in X if all T' ∈ X have some transition labelled with ℓ. Otherwise, ℓ is dead.
- ► Label ℓ locally subsumes label ℓ' in \mathcal{T} if for all transitions $\langle s, \ell', t \rangle$ of \mathcal{T} there is also a transition $\langle s, \ell, t \rangle$ in \mathcal{T} .
- ℓ globally subsumes ℓ' if it locally subsumes ℓ' in all $\mathcal{T}' \in X$.
- \$\ell\$ and \$\ell\$' are locally equivalent in \$\mathcal{T}\$ if they label the same transitions in \$\mathcal{T}\$, i.e. \$\ell\$ locally subsumes \$\ell\$' in \$\mathcal{T}\$ and vice versa.
- ℓ and ℓ' are *T*-combinable if they are locally equivalent in all transition systems *T*' ∈ *X* \ {*T*}.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 17, 2016

```
C16. M&S: Strategies and Label Reduction Label Reduction
Back to Example (1)
\vec{T} \xrightarrow{o, o', p, p', q} \overrightarrow{T' \xrightarrow{o, o', p, p', q}}Label o' globally subsumes label o.
```


return the remaining abstract transition system in abs

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Summary

C16. M&S: Strategies and Label Reduction

Literature (2)

 Raz Nissim, Jörg Hoffmann and Malte Helmert. Computing Perfect Heuristics in Polynomial Time: On Bisimulation and Merge-and-Shrink Abstractions in Optimal Planning. *Proc. IJCAI 2011*, pp. 1983–1990, 2011. Introduces bisimulation-based shrinking.
 Malte Helmert, Patrik Haslum, Jörg Hoffmann and Raz Nissim.
 Merge-and-Shrink Abstraction: A Method for Generating Lower Bounds in Factored State Spaces. *Journal of the ACM 61 (3)*, pp. 16:1–63, 2014. Detailed journal version of the previous two publications.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

November 17, 2016 41 / 42

 Literature (3)
 Silvan Sievers, Martin Wehrle and Malte Helmert. Generalized Label Reduction for Merge-and-Shrink Heuristics. *Proc. AAAI 2014*, pp. 2358–2366, 2014. Introduces label reduction as covered in these slides (there has been a more complicated version before).
 Gaojian Fan, Martin Müller and Robert Holte. Non-linear merging strategies for merge-and-shrink based on variable interactions.
 Proc. AAAI 2014, pp. 2358–2366, 2014. Introduces UMC and MIASM merging strategies

Planning and Optimization

November 17, 2016

42 / 42

C16. M&S: Strategies and Label Reduction

M. Helmert, G. Röger (Universität Basel)