Planning and Optimization C15. M&S: Maintaining the Mapping and Some Theory

Malte Helmert and Gabriele Röger

Universität Basel

November 17, 2016

Planning and Optimization

C15. M&S: Maintaining the Mapping and Some Theory

M. Helmert, G. Röger (Universität Basel)

Motivation

1 / 44

November 17, 2016

C15.1 Motivation

Planning and Optimization November 17, 2016 — C15. M&S: Maintaining the Mapping and Some Theory

C15. M&S: Maintaining the Mapping and Some Theory Generic Algorithm Template Generic Abstraction Computation Algorithm $abs := \{ \mathcal{T}^{\pi_{\{v\}}} \mid v \in V \}$ while abs contains more than one abstract transition system: select A_1 , A_2 from *abs* shrink \mathcal{A}_1 and/or \mathcal{A}_2 until $size(\mathcal{A}_1) \cdot size(\mathcal{A}_2) \leq N$ $abs := abs \setminus \{A_1, A_2\} \cup \{A_1 \otimes A_2\}$ return the remaining abstract transition system in abs *N*: parameter bounding number of abstract states Questions for practical implementation: How to represent the corresponding abstraction? • Which abstractions to select? \rightarrow merging strategy ► How to shrink an abstraction? ~→ shrinking strategy • How to choose N? \rightsquigarrow usually: as high as memory allows Planning and Optimization 4 / 44

M. Helmert, G. Röger (Universität Basel)

M. Helmert, G. Röger (Universität Basel)

C15.2 Maintaining the Abstraction

M. Helmert, G. Röger (Universität Basel)

November 17, 2016

C15. M&S: Maintaining the Mapping and Some Theory

Maintaining the Abstraction

5 / 44

7 / 44

```
How to Represent the Abstraction? (2)
```

Idea: the computation of the abstraction mapping follows the sequence of product computations

Planning and Optimization

- Once we have computed the final abstract transition system, we compute all abstract goal distances and store them in a one-dimensional table.
- At this point, we can throw away all the abstract transition systems – we just need to keep the tables.
- During search, we do a sequence of table lookups to navigate from the atomic abstraction states to the final abstract state and heuristic value
 - $\rightsquigarrow 2|V|$ lookups, O(|V|) time

Again, we illustrate the process with our running example.

C15. M&S: Maintaining the Mapping and Some Theory

How to Represent the Abstraction? (1)

Idea: the computation of the abstraction follows the sequence of product computations

- For the atomic abstractions π_{v}, we generate a one-dimensional table that denotes which value in dom(v) corresponds to which abstract state in T<sup>π_{v}.
 </sup>
- During the merge (product) step A := A₁ ⊗ A₂, we generate a two-dimensional table that denotes which pair of states of A₁ and A₂ corresponds to which state of A.
- During the shrink (abstraction) steps, we make sure to keep the table in sync with the abstraction choices.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

November 17, 2016 6 / 44

C15. M&S: Maintaining the Mapping and Some Theory

Maintaining the Abstraction

Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic abstractions is simple. Just number the states (domain values) consecutively and generate a table of references to the states:

C15. M&S: Maintaining the Mapping and Some Theory

Maintaining the Abstraction

Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic abstractions is simple. Just number the states (domain values) consecutively and generate a table of references to the states:

C15. M&S: Maintaining the Mapping and Some Theory

Maintaining the Abstraction

Abstraction Example: Merge Step

For product transition systems $\mathcal{A}_1 \otimes \mathcal{A}_2$, we again number the product states consecutively and generate a table that links state pairs of \mathcal{A}_1 and \mathcal{A}_2 to states of \mathcal{A} :

Maintaining the Abstraction

Abstraction Example: Merge Step

For product transition systems $A_1 \otimes A_2$, we again number the product states consecutively and generate a table that links state pairs of A_1 and A_2 to states of A:

C15. M&S: Maintaining the Mapping and Some Theory

Maintaining the Abstraction

Maintaining the Abstraction when Shrinking

- The hard part in representing the abstraction is to keep it consistent when shrinking.
- ► In theory, this is easy to do:
 - When combining states i and j, arbitrarily use one of them (say i) as the number of the new state.
 - Find all table entries in the table for this abstraction which map to the other state j and change them to i.
- However, doing a table scan each time two states are combined is very inefficient.
- Fortunately, there also is an efficient implementation which takes constant time per combination.

M. Helmert, G. Röger (Universität Basel)

Maintaining the Abstraction Efficiently

- Associate each abstract state with a linked list, representing all table entries that map to this state.
- Before starting the shrink operation, initialize the lists by scanning through the table, then discard the table.
- While shrinking, when combining i and j, splice the list elements of j into the list elements of i.
 - ► For linked lists, this is a constant-time operation.
- Once shrinking is completed, renumber all abstract states so that there are no gaps in the numbering.
- Finally, regenerate the mapping table from the linked list information.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

November 17, 2016 13 / 44

Maintaining the Abstraction

C15. M&S: Maintaining the Mapping and Some Theory Abstraction Example: Shrink Step

Representation before shrinking:

Maintaining the Abstraction

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction Abstraction Example: Shrink Step 2. When combining *i* and *j*, splice $list_i$ into $list_i$. $list_0 = \{(0,0)\}$ $list_1 = \{(0, 1)\}$ $list_2 = \{(1,0)\}$ $list_3 = \{(1, 1)\}$ $list_4 = \{(2,0)\}$ $list_5 = \{(2,1)\}$ $list_6 = \{(3,0)\}$ $list_7 = \{(3, 1)\}$ M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 16 / 44

Planning and Optimization

November 17, 2016

19 / 44

M. Helmert, G. Röger (Universität Basel)

C15. M&S: Maintaining the Mapping and Some Theory

Planning and Optimization Nover

November 17, 2016 20 / 44

Maintaining the Abstraction

4. Regenerate the mapping table from the linked lists.

Planning and Optimization

 $\begin{aligned} & \text{list}_{0} = \{(0,0)\} \\ & \text{list}_{1} = \{(0,1)\} \\ & \text{list}_{2} = \{(1,0),(1,1)\} \\ & \text{list}_{3} = \{(2,0),(2,1), \\ & (3,0),(3,1)\} \\ & \text{list}_{4} = \emptyset \\ & \text{list}_{5} = \emptyset \\ & \text{list}_{6} = \emptyset \\ & \text{list}_{7} = \emptyset \end{aligned}$

	$s_2 = 0$	$s_2 = 1$
$s_1 = 0$	0	1
$s_1 = 1$	2	2
$s_1 = 2$	3	3
$s_1 = 3$	3	3

C15. M&S: Maintaining the Mapping and Some Theory

The Final Heuristic Representation

At the end, our heuristic is represented by six tables:

three one-dimensional tables for the atomic abstractions:

$T_{\sf package}$	L	R	Α	В	T _{truck A}	L	R		T _{truck B}	L	R
	0	1	2	3		0	1	-		0	1

two tables for the two merge and subsequent shrink steps:

	$T_{\rm m\&s}^1$	$s_2 = 0$	$s_2 = 1$	$T_{\rm m\&s}^2$	$s_2 = 0$	$s_2 = 1$		
	$s_1 = 0$	0	1	$s_1 = 0$	1	1		
	$s_1 = 1$	2	2	$s_1 = 1$	1	0		
	$s_1 = 2$	3	3	$s_1 = 2$	2	2		
	$s_1 = 3$	3	3	$s_1 = 3$	3	3		
	one tab	le with	goal dist	ances for	the fina	al transi	ition system:	
	$\frac{T_h}{b(c)}$	s = 0 s	=1 s =	2 s = 3	_			
	n(s)	3	2 1	0				
Given a state $s = \{ package \mapsto p, truck A \mapsto a, truck B \mapsto b \},\$								
its heuristic value is then looked up as:								
►	h(s) =	$T_h[T_{\rm m\&}^2$	$T_{m\&s}^{1}[T_{m\&s}^{1}]$	T _{package} [p], T _{truck}	, <mark>a</mark> [a]], 7	T _{truck B} [b]]]	
elmert. G. R	öger (Unive	rsität Basel)	Plan	ning and Optim	ization		November 17, 2016	

C15. M&S: Maintaining the Mapping and Some Theory Safe and Exact Transformations C15.3 Safe and Exact Transformations

Generic Algorithm Template

Generic abstraction computation algorithm

 $abs := \{\mathcal{T}^{\pi_{\{v\}}} \mid v \in V\}$ while *abs* contains more than one abstraction: select \mathcal{A}_1 , \mathcal{A}_2 from *abs* shrink \mathcal{A}_1 and/or \mathcal{A}_2 until $size(\mathcal{A}_1) \cdot size(\mathcal{A}_2) \leq N$ $abs := abs \setminus \{\mathcal{A}_1, \mathcal{A}_2\} \cup \{\mathcal{A}_1 \otimes \mathcal{A}_2\}$ return the remaining abstraction in *abs*

N: parameter bounding number of abstract states

Remaining Questions:

- ▶ Which abstractions to select? ~→ merging strategy
- ► How to shrink an abstraction? ~> shrinking strategy

We first need a bit more theory...

M. Helmert, G. Röger (Universität Basel) Planning and Optimization

November 17, 2016 30 / 44

C15. M&S: Maintaining the Mapping and Some Theory Collections of Transition Systems Safe and Exact Transformations

Definition (Collection of Transition Systems)

A set X of transition systems is a collection of transition systems if all $\mathcal{T} \in X$ have the same set of labels and the same cost function. The combined system is $\mathcal{T}_X := \bigotimes_{\mathcal{T} \in X} \mathcal{T}$.

29 / 44

Maintaining the Abstraction

Safe and Exact Transformations

Safe Transformations

Definition (Safe Transformation)

Let X and X' be collections of transition systems with label sets L and L' and cost functions c and c', respectively.

The transformation from X to X' is safe if there exist functions σ and τ mapping the states and labels of \mathcal{T}_X to the states and labels of $\mathcal{T}_{X'}$ such that

- $\blacktriangleright L' = \{\tau(\ell) \mid \ell \in L\},\$
- ► $c'(\tau(\ell)) \leq c(\ell)$ for all $\ell \in L$,
- if $\langle s, \ell, t \rangle$ is a transition of \mathcal{T}_X then $\langle \sigma(s), \tau(\ell), \sigma(t) \rangle$ is a transition of $\mathcal{T}_{X'}$, and
- if s is a goal state of \mathcal{T}_X then $\sigma(s)$ is a goal state of $\mathcal{T}_{X'}$.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

November 17, 2016 33 / 44

Safe and Exact Transformations

C15. M&S: Maintaining the Mapping and Some Theory

Heuristic Properties (1)

Theorem

Let X and X' be collections of transition systems. If the transformation from X to X' is safe with functions σ and τ then $h(s) = h^*_{\mathcal{T}_{X'}}(\sigma(s))$ is a safe, goal-aware, admissible, and consistent heuristic for \mathcal{T}_X .

Proof.

We prove goal-awareness and consistency, the other properties follow from these two.

Goal-awareness: For all goal states s_{\star} of \mathcal{T}_X , state $\sigma(s_{\star})$ is a goal state of $\mathcal{T}_{X'}$ and therefore $h(s_{\star}) = h^*_{\mathcal{T}_{X'}}(\sigma(s_{\star})) = 0$.

C15. M&S: Maintaining the Mapping and Some Theory

Examples

Safe and Exact Transformations

X: Collection of transition systems

Replacement with Synchronized Product is Safe

Let $\mathcal{T}_1, \mathcal{T}_2 \in X$ with $\mathcal{T}_1 \neq \mathcal{T}_2$. The transformation from X to $X' := (X \setminus {\mathcal{T}_1, \mathcal{T}_2}) \cup {\mathcal{T}_1 \otimes \mathcal{T}_2}$ is safe with $\sigma = \text{id and } \tau = \text{id}$.

Abstraction is Safe

Let α be an abstraction for $\mathcal{T}_i \in X$. The transformation from X to $X' := (X \setminus \{\mathcal{T}_i\}) \cup \{\mathcal{T}_i^{\alpha}\}$ is safe with $\tau = \text{id}$ and $\sigma(\langle s_1, \ldots, s_n \rangle) = \langle s_1, \ldots, s_{i-1}, \alpha(s_i), s_{i+1}, \ldots, s_n \rangle$.

Planning and Optimization

(Proofs omitted.)

M. Helmert, G. Röger (Universität Basel)

November 17, 2016

C15. M&S: Maintaining the Mapping and Some Theory

Safe and Exact Transformations

34 / 44

Heuristic Properties (2)

Proof (continued).

Consistency: Let c and c' be the label cost functions of X and X', respectively. Consider state s of \mathcal{T}_X and transition $\langle s, \ell, t \rangle$. As $\mathcal{T}_{X'}$ has a transition $\langle \sigma(s), \tau(\ell), \sigma(t) \rangle$, it holds that

 $egin{aligned} h(s) &= h^*_{\mathcal{T}_{X'}}(\sigma(s)) \ &\leq c'(au(\ell)) + h^*_{\mathcal{T}_{X'}}(\sigma(t)) \ &= c'(au(\ell)) + h(t) \ &\leq c(\ell) + h(t) \end{aligned}$

The second inequality holds due to the requirement on the label costs. $\hfill \square$

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

Safe and Exact Transformations

Exact Transformations

Definition (Exact Transformation)

Let X and X' be collections of transition systems with label sets L and L' and cost functions c and c', respectively.

The transformation from X to X' is exact if there exist functions σ and τ mapping the states and labels of \mathcal{T}_X to the states and labels of $\mathcal{T}_{X'}$ such that

- () σ and τ satisfy the requirements of safe transformations,
- if $\langle s', \ell', t' \rangle$ is a transition of $\mathcal{T}_{X'}$ then $\langle s, \ell, t \rangle$ is a transition of \mathcal{T}_X for all $s \in \sigma^{-1}(s'), t \in \sigma^{-1}(t')$ and some $\ell \in \tau^{-1}(\ell')$,
- if s' is a goal state of $\mathcal{T}_{X'}$ then all states $s \in \sigma^{-1}(s')$ are goal states of \mathcal{T}_X , and

Planning and Optimization

• $c(\ell) = c'(\tau(\ell))$ for all $\ell \in L$.

 \rightsquigarrow no "new" transitions and goal states, no cheaper labels

```
M. Helmert, G. Röger (Universität Basel)
```

November 17, 2016 37 / 44

Safe and Exact Transformations

C15. M&S: Maintaining the Mapping and Some Theory

Heuristic Properties with Exact Transformations (1)

Theorem

Let X and X' be collections of transition systems. If the transformation from X to X' is exact with functions σ and τ then $h_{\mathcal{T}_X}^*(s) = h_{\mathcal{T}_{X'}}^*(\sigma(s))$.

Proof.

As the transformation is safe, $h^*_{\mathcal{T}_{X'}}(\sigma(s))$ is admissible for \mathcal{T}_X and therefore $h^*_{\mathcal{T}_X}(s) \ge h^*_{\mathcal{T}_{Y'}}(\sigma(s))$.

For the other direction, we show that for every state s' of $\mathcal{T}_{X'}$ and goal path π' for s', there is for each $s \in \sigma^{-1}(s')$ a goal path in \mathcal{T}_X that has the same cost.

C15. M&S: Maintaining the Mapping and Some Theory

Examples

Replacement with Synchronized Product is Exact

Let $\mathcal{T}_1, \mathcal{T}_2 \in X$ with $\mathcal{T}_1 \neq \mathcal{T}_2$. The transformation from X to $X' := (X \setminus {\mathcal{T}_1, \mathcal{T}_2}) \cup {\mathcal{T}_1 \otimes \mathcal{T}_2}$ is exact with $\sigma = \text{id}$ and $\tau = \text{id}$.

(Proof omitted.)

More examples will follow.

C15. M&S: Maintaining the Mapping and Some Theory

M. Helmert, G. Röger (Universität Basel)

Safe and Exact Transformations

38 / 44

November 17, 2016

Heuristic Properties with Exact Transformations (2)

Planning and Optimization

Proof (continued).

Proof via induction over the length of π' .

 $|\pi'| = 0$: If s' is a goal state of $\mathcal{T}_{X'}$ then each $s \in \sigma^{-1}(s')$ is a goal state of \mathcal{T}_X and the empty path is a goal path for s in \mathcal{T}_X .

 $|\pi'| = i + 1$: Let $\pi' = \langle s', \ell', t' \rangle \pi'_{t'}$, where $\pi'_{t'}$ is a goal path of length *i* from *t'*. Then there is for each $t \in \sigma^{-1}(t')$ a goal path π_t of the same cost in \mathcal{T}_X . Furthermore, for all $s \in \sigma^{-1}(s')$ there is a label $\ell \in \tau^{-1}(\ell')$ such that \mathcal{T}_X has a transition $\langle s, \ell, t \rangle$ with $t \in \sigma^{-1}(t')$. The path $\pi = \langle s, \ell, t \rangle \pi_t$ is a solution for *s* in \mathcal{T} . As ℓ and ℓ' must have the same cost and π_t and $\pi'_{t'}$ have the same cost, π has the same cost as π' .

Planning and Optimization

Safe and Exact Transformations

Sequences of Transformations

Theorem (Sequences of Transformations)

Let X_1, \ldots, X_n be collections of transition systems. If for $i \in \{1, \ldots, n-1\}$ the transformation from X_i to X_{i+1} is safe (exact) then the transformation from X_1 to X_n is safe (exact).

Proof idea: The composition of the σ and τ functions of each step satisfy the required conditions.

Planning and Optimization

Planning and Optimization

C15. M&S: Maintaining the Mapping and Some Theory

M. Helmert, G. Röger (Universität Basel)

41 / 44

Summar

43 / 44

November 17, 2016

C15.4 Summary

Consequences

Generic Abstraction Computation Algorithm

 $\begin{array}{l} \textit{abs} := \{\mathcal{T}^{\pi_{\{v\}}} \mid v \in V\} =: X_0 \\ \textit{while abs contains more than one abstract transition system:} \\ \textit{select } \mathcal{A}_1, \, \mathcal{A}_2 \; \textit{from abs} \\ \textit{shrink } \mathcal{A}_1 \; \textit{and/or } \mathcal{A}_2 \; \textit{until size}(\mathcal{A}_1) \cdot \textit{size}(\mathcal{A}_2) \leq N \\ \textit{abs} := \textit{abs} \setminus \{\mathcal{A}_1, \mathcal{A}_2\} \cup \{\mathcal{A}_1 \otimes \mathcal{A}_2\} \end{array}$

return the remaining abstract transition system in abs

- Initially \mathcal{T}_{abs} is the concrete transition system.
- ► Each iteration performs a safe transformation of *abs*.
 → the corresponding abstraction heuristic is safe, goal-aware, consistent, and admissible.
- ▶ If shrinking is exact, the corresponding heuristic is perfect.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization No

November 17, 2016 42 / 44

Summar

C15. M&S: Maintaining the Mapping and Some Theory

Summary

- Merge-and-shrink abstractions are represented by a set of reference tables, one for each atomic abstraction and one for each merge-and-shrink step.
- The heuristic representation uses an additional table for the goal distances in the final abstract transition system.
- As we only use safe transformations, the resulting heuristic is safe, goal-aware, admissible, and consistent.
- If we use only exact transformations, the resulting heuristic is perfect.