
Planning and Optimization
C15. M&S: Maintaining the Mapping and Some Theory

Malte Helmert and Gabriele Röger

Universität Basel

November 17, 2016

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 1 / 44

Planning and Optimization
November 17, 2016 — C15. M&S: Maintaining the Mapping and Some Theory

C15.1 Motivation

C15.2 Maintaining the Abstraction

C15.3 Safe and Exact Transformations

C15.4 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 2 / 44

C15. M&S: Maintaining the Mapping and Some Theory Motivation

C15.1 Motivation

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 3 / 44

C15. M&S: Maintaining the Mapping and Some Theory Motivation

Generic Algorithm Template

Generic Abstraction Computation Algorithm

abs := {T π{v} | v ∈ V }
while abs contains more than one abstract transition system:

select A1, A2 from abs
shrink A1 and/or A2 until size(A1) · size(A2) ≤ N
abs := abs \ {A1,A2} ∪ {A1 ⊗A2}

return the remaining abstract transition system in abs

N: parameter bounding number of abstract states

Questions for practical implementation:

I How to represent the corresponding abstraction?

I Which abstractions to select? merging strategy

I How to shrink an abstraction? shrinking strategy

I How to choose N? usually: as high as memory allows

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 4 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

C15.2 Maintaining the Abstraction

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 5 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

How to Represent the Abstraction? (1)

Idea: the computation of the abstraction follows the sequence of
product computations

I For the atomic abstractions π{v}, we generate a
one-dimensional table that denotes which value in dom(v)
corresponds to which abstract state in T π{v} .

I During the merge (product) step A := A1 ⊗A2, we generate
a two-dimensional table that denotes which pair of states of
A1 and A2 corresponds to which state of A.

I During the shrink (abstraction) steps, we make sure to keep
the table in sync with the abstraction choices.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 6 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

How to Represent the Abstraction? (2)

Idea: the computation of the abstraction mapping follows the
sequence of product computations

I Once we have computed the final abstract transition system,
we compute all abstract goal distances and store them in a
one-dimensional table.

I At this point, we can throw away all the abstract transition
systems – we just need to keep the tables.

I During search, we do a sequence of table lookups to navigate
from the atomic abstraction states to the final abstract state
and heuristic value
 2|V | lookups, O(|V |) time

Again, we illustrate the process with our running example.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 7 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic
abstractions is simple. Just number the states (domain values)
consecutively and generate a table of references to the states:

L

A

B

R

M???
PA

L

DA
L

M???

DAR
PAR

M???

PB
R

DB
R

M???

DBL

PBL

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 8 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic
abstractions is simple. Just number the states (domain values)
consecutively and generate a table of references to the states:

0

2

3

1

M???
PA

L

DA
L

M???

DAR
PAR

M???

PB
R

DB
R

M???

DBL

PBL

L R A B

0 1 2 3

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 9 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Merge Step

For product transition systems A1 ⊗A2, we again number the
product states consecutively and generate a table that links state
pairs of A1 and A2 to states of A:

LL LR

AL AR

BL BR

RL RR

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 10 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Merge Step

For product transition systems A1 ⊗A2, we again number the
product states consecutively and generate a table that links state
pairs of A1 and A2 to states of A:

0 1

4 5

6 7

2 3

s2 = 0 s2 = 1

s1 = 0 0 1
s1 = 1 2 3
s1 = 2 4 5
s1 = 3 6 7

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 11 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Maintaining the Abstraction when Shrinking

I The hard part in representing the abstraction is to keep it
consistent when shrinking.

I In theory, this is easy to do:
I When combining states i and j , arbitrarily use one of them

(say i) as the number of the new state.
I Find all table entries in the table for this abstraction which

map to the other state j and change them to i .

I However, doing a table scan each time two states are
combined is very inefficient.

I Fortunately, there also is an efficient implementation which
takes constant time per combination.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 12 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Maintaining the Abstraction Efficiently

I Associate each abstract state with a linked list, representing
all table entries that map to this state.

I Before starting the shrink operation, initialize the lists by
scanning through the table, then discard the table.

I While shrinking, when combining i and j , splice the list
elements of j into the list elements of i .

I For linked lists, this is a constant-time operation.

I Once shrinking is completed, renumber all abstract states so
that there are no gaps in the numbering.

I Finally, regenerate the mapping table from the linked list
information.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 13 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step

Representation before shrinking:

0 1

4 5

6 7

2 3

s2 = 0 s2 = 1

s1 = 0 0 1
s1 = 1 2 3
s1 = 2 4 5
s1 = 3 6 7

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 14 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step

1. Convert table to linked lists and discard it.

0 1

4 5

6 7

2 3

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0)}
list3 = {(1, 1)}
list4 = {(2, 0)}
list5 = {(2, 1)}
list6 = {(3, 0)}
list7 = {(3, 1)}

s2 = 0 s2 = 1

s1 = 0 0 1
s1 = 1 2 3
s1 = 2 4 5
s1 = 3 6 7

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 15 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1

4 5

6 7

2 3

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0)}
list3 = {(1, 1)}
list4 = {(2, 0)}
list5 = {(2, 1)}
list6 = {(3, 0)}
list7 = {(3, 1)}

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 16 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1

4 5

6 7

2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0)}
list5 = {(2, 1)}
list6 = {(3, 0)}
list7 = {(3, 1)}

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 17 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1

4 54 5

6 7

2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0)}
list5 = {(2, 1)}
list6 = {(3, 0)}
list7 = {(3, 1)}

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 18 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1

4

6 7

2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1)}
list5 = ∅
list6 = {(3, 0)}
list7 = {(3, 1)}

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 19 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1

4

6 76 7

2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1)}
list5 = ∅
list6 = {(3, 0)}
list7 = {(3, 1)}

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 20 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1

4

6

2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1)}
list5 = ∅
list6 = {(3, 0), (3, 1)}
list7 = ∅

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 21 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1

44

66

2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1)}
list5 = ∅
list6 = {(3, 0), (3, 1)}
list7 = ∅

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 22 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1 4 2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1),

(3, 0), (3, 1)}
list5 = ∅
list6 = ∅
list7 = ∅

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 23 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1 4 2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1),

(3, 0), (3, 1)}
list5 = ∅
list6 = ∅
list7 = ∅

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 24 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step

3. Renumber abstract states consecutively.

0 1 47→3 2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1),

(3, 0), (3, 1)}
list5 = ∅
list6 = ∅
list7 = ∅

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 25 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step

3. Renumber abstract states consecutively.

0 1 3 2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = {(2, 0), (2, 1),

(3, 0), (3, 1)}
list4 = ∅
list5 = ∅
list6 = ∅
list7 = ∅

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 26 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step

4. Regenerate the mapping table from the linked lists.

0 1 3 2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = {(2, 0), (2, 1),

(3, 0), (3, 1)}
list4 = ∅
list5 = ∅
list6 = ∅
list7 = ∅

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 27 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step

4. Regenerate the mapping table from the linked lists.

0 1 3 2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = {(2, 0), (2, 1),

(3, 0), (3, 1)}
list4 = ∅
list5 = ∅
list6 = ∅
list7 = ∅

s2 = 0 s2 = 1

s1 = 0 0 1
s1 = 1 2 2
s1 = 2 3 3
s1 = 3 3 3

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 28 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

The Final Heuristic Representation

At the end, our heuristic is represented by six tables:

I three one-dimensional tables for the atomic abstractions:
Tpackage L R A B

0 1 2 3

Ttruck A L R

0 1

Ttruck B L R

0 1

I two tables for the two merge and subsequent shrink steps:

T 1
m&s s2 = 0 s2 = 1

s1 = 0 0 1
s1 = 1 2 2
s1 = 2 3 3
s1 = 3 3 3

T 2
m&s s2 = 0 s2 = 1

s1 = 0 1 1
s1 = 1 1 0
s1 = 2 2 2
s1 = 3 3 3

I one table with goal distances for the final transition system:

Th s = 0 s = 1 s = 2 s = 3

h(s) 3 2 1 0

Given a state s = {package 7→ p, truck A 7→ a, truck B 7→ b},
its heuristic value is then looked up as:

I h(s) = Th[T 2
m&s[T

1
m&s[Tpackage[p],Ttruck A[a]],Ttruck B[b]]]

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 29 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Generic Algorithm Template

Generic abstraction computation algorithm

abs := {T π{v} | v ∈ V }
while abs contains more than one abstraction:

select A1, A2 from abs
shrink A1 and/or A2 until size(A1) · size(A2) ≤ N
abs := abs \ {A1,A2} ∪ {A1 ⊗A2}

return the remaining abstraction in abs

N: parameter bounding number of abstract states

Remaining Questions:

I Which abstractions to select? merging strategy

I How to shrink an abstraction? shrinking strategy

We first need a bit more theory. . .

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 30 / 44

C15. M&S: Maintaining the Mapping and Some Theory Safe and Exact Transformations

C15.3 Safe and Exact
Transformations

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 31 / 44

C15. M&S: Maintaining the Mapping and Some Theory Safe and Exact Transformations

Collections of Transition Systems

Definition (Collection of Transition Systems)

A set X of transition systems is a collection of transition systems if
all T ∈ X have the same set of labels and the same cost function.
The combined system is TX :=

⊗
T ∈X T .

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 32 / 44

C15. M&S: Maintaining the Mapping and Some Theory Safe and Exact Transformations

Safe Transformations

Definition (Safe Transformation)

Let X and X ′ be collections of transition systems with label sets L
and L′ and cost functions c and c ′, respectively.

The transformation from X to X ′ is safe if there exist functions σ
and τ mapping the states and labels of TX to the states and labels
of TX ′ such that

I L′ = {τ(`) | ` ∈ L},
I c ′(τ(`)) ≤ c(`) for all ` ∈ L,

I if 〈s, `, t〉 is a transition of TX then 〈σ(s), τ(`), σ(t)〉 is a
transition of TX ′ , and

I if s is a goal state of TX then σ(s) is a goal state of TX ′ .

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 33 / 44

C15. M&S: Maintaining the Mapping and Some Theory Safe and Exact Transformations

Examples

X : Collection of transition systems

Replacement with Synchronized Product is Safe

Let T1, T2 ∈ X with T1 6= T2. The transformation from X to
X ′ := (X \ {T1, T2}) ∪ {T1 ⊗ T2} is safe with σ = id and τ = id.

Abstraction is Safe

Let α be an abstraction for Ti ∈ X . The transformation from X to
X ′ := (X \ {Ti}) ∪ {T αi } is safe with τ = id and
σ(〈s1, . . . , sn〉) = 〈s1, . . . , si−1, α(si), si+1, . . . , sn〉.

(Proofs omitted.)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 34 / 44

C15. M&S: Maintaining the Mapping and Some Theory Safe and Exact Transformations

Heuristic Properties (1)

Theorem

Let X and X ′ be collections of transition systems. If the
transformation from X to X ′ is safe with functions σ and τ then
h(s) = h∗TX ′ (σ(s)) is a safe, goal-aware, admissible, and consistent
heuristic for TX .

Proof.

We prove goal-awareness and consistency, the other properties
follow from these two.

Goal-awareness: For all goal states s? of TX , state σ(s?) is a goal
state of TX ′ and therefore h(s?) = h∗TX ′ (σ(s?)) = 0. . . .

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 35 / 44

C15. M&S: Maintaining the Mapping and Some Theory Safe and Exact Transformations

Heuristic Properties (2)

Proof (continued).

Consistency: Let c and c ′ be the label cost functions of X and X ′,
respectively. Consider state s of TX and transition 〈s, `, t〉.
As TX ′ has a transition 〈σ(s), τ(`), σ(t)〉, it holds that

h(s) = h∗TX ′ (σ(s))

≤ c ′(τ(`)) + h∗TX ′ (σ(t))

= c ′(τ(`)) + h(t)

≤ c(`) + h(t)

The second inequality holds due to the requirement on the label
costs.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 36 / 44

C15. M&S: Maintaining the Mapping and Some Theory Safe and Exact Transformations

Exact Transformations

Definition (Exact Transformation)

Let X and X ′ be collections of transition systems with label sets L
and L′ and cost functions c and c ′, respectively.

The transformation from X to X ′ is exact if there exist functions σ
and τ mapping the states and labels of TX to the states and labels
of TX ′ such that

1 σ and τ satisfy the requirements of safe transformations,

2 if 〈s ′, `′, t ′〉 is a transition of TX ′ then 〈s, `, t〉 is a transition of
TX for all s ∈ σ−1(s ′), t ∈ σ−1(t ′) and some ` ∈ τ−1(`′),

3 if s ′ is a goal state of TX ′ then all states s ∈ σ−1(s ′) are goal
states of TX , and

4 c(`) = c ′(τ(`)) for all ` ∈ L.

 no “new” transitions and goal states, no cheaper labels

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 37 / 44

C15. M&S: Maintaining the Mapping and Some Theory Safe and Exact Transformations

Examples

Replacement with Synchronized Product is Exact

Let T1, T2 ∈ X with T1 6= T2. The transformation from X to
X ′ := (X \ {T1, T2}) ∪ {T1 ⊗ T2} is exact with σ = id and τ = id.

(Proof omitted.)

More examples will follow.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 38 / 44

C15. M&S: Maintaining the Mapping and Some Theory Safe and Exact Transformations

Heuristic Properties with Exact Transformations (1)

Theorem

Let X and X ′ be collections of transition systems. If the
transformation from X to X ′ is exact with functions σ and τ then
h∗TX (s) = h∗TX ′ (σ(s)).

Proof.

As the transformation is safe, h∗TX ′ (σ(s)) is admissible for TX and

therefore h∗TX (s) ≥ h∗TX ′ (σ(s)).

For the other direction, we show that for every state s ′ of TX ′ and
goal path π′ for s ′, there is for each s ∈ σ−1(s ′) a goal path in TX
that has the same cost. . . .

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 39 / 44

C15. M&S: Maintaining the Mapping and Some Theory Safe and Exact Transformations

Heuristic Properties with Exact Transformations (2)

Proof (continued).

Proof via induction over the length of π′.

|π′| = 0: If s ′ is a goal state of TX ′ then each s ∈ σ−1(s ′) is a goal
state of TX and the empty path is a goal path for s in TX .

|π′| = i + 1: Let π′ = 〈s ′, `′, t ′〉π′t′ , where π′t′ is a goal path of
length i from t ′. Then there is for each t ∈ σ−1(t ′) a goal path πt
of the same cost in TX . Furthermore, for all s ∈ σ−1(s ′) there is a
label ` ∈ τ−1(`′) such that TX has a transition 〈s, `, t〉 with
t ∈ σ−1(t ′). The path π = 〈s, `, t〉πt is a solution for s in T . As `
and `′ must have the same cost and πt and π′t′ have the same
cost, π has the same cost as π′.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 40 / 44

C15. M&S: Maintaining the Mapping and Some Theory Safe and Exact Transformations

Sequences of Transformations

Theorem (Sequences of Transformations)

Let X1, . . . ,Xn be collections of transition systems.
If for i ∈ {1, . . . , n − 1} the transformation from Xi to Xi+1 is safe
(exact) then the transformation from X1 to Xn is safe (exact).

Proof idea: The composition of the σ and τ functions of each step
satisfy the required conditions.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 41 / 44

C15. M&S: Maintaining the Mapping and Some Theory Safe and Exact Transformations

Consequences

Generic Abstraction Computation Algorithm

abs := {T π{v} | v ∈ V } =: X0

while abs contains more than one abstract transition system:
select A1, A2 from abs
shrink A1 and/or A2 until size(A1) · size(A2) ≤ N
abs := abs \ {A1,A2} ∪ {A1 ⊗A2}

return the remaining abstract transition system in abs

I Initially Tabs is the concrete transition system.

I Each iteration performs a safe transformation of abs.
→ the corresponding abstraction heuristic is safe, goal-aware,
→ consistent, and admissible.

I If shrinking is exact, the corresponding heuristic is perfect.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 42 / 44

C15. M&S: Maintaining the Mapping and Some Theory Summary

C15.4 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 43 / 44

C15. M&S: Maintaining the Mapping and Some Theory Summary

Summary

I Merge-and-shrink abstractions are represented by a set of
reference tables, one for each atomic abstraction and one for
each merge-and-shrink step.

I The heuristic representation uses an additional table for the
goal distances in the final abstract transition system.

I As we only use safe transformations, the resulting heuristic is
safe, goal-aware, admissible, and consistent.

I If we use only exact transformations, the resulting heuristic is
perfect.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 44 / 44

	Motivation
	Maintaining the Abstraction
	Safe and Exact Transformations
	Summary

