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Generic Algorithm Template

Generic Abstraction Computation Algorithm

abs := {T π{v} | v ∈ V }
while abs contains more than one abstract transition system:

select A1, A2 from abs
shrink A1 and/or A2 until size(A1) · size(A2) ≤ N
abs := abs \ {A1,A2} ∪ {A1 ⊗A2}

return the remaining abstract transition system in abs

N: parameter bounding number of abstract states

Questions for practical implementation:

I How to represent the corresponding abstraction?

I Which abstractions to select?  merging strategy

I How to shrink an abstraction?  shrinking strategy

I How to choose N?  usually: as high as memory allows
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How to Represent the Abstraction? (1)

Idea: the computation of the abstraction follows the sequence of
product computations

I For the atomic abstractions π{v}, we generate a
one-dimensional table that denotes which value in dom(v)
corresponds to which abstract state in T π{v} .

I During the merge (product) step A := A1 ⊗A2, we generate
a two-dimensional table that denotes which pair of states of
A1 and A2 corresponds to which state of A.

I During the shrink (abstraction) steps, we make sure to keep
the table in sync with the abstraction choices.
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How to Represent the Abstraction? (2)

Idea: the computation of the abstraction mapping follows the
sequence of product computations

I Once we have computed the final abstract transition system,
we compute all abstract goal distances and store them in a
one-dimensional table.

I At this point, we can throw away all the abstract transition
systems – we just need to keep the tables.

I During search, we do a sequence of table lookups to navigate
from the atomic abstraction states to the final abstract state
and heuristic value
 2|V | lookups, O(|V |) time

Again, we illustrate the process with our running example.
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Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic
abstractions is simple. Just number the states (domain values)
consecutively and generate a table of references to the states:

L

A

B

R

M???
PA

L

DA
L

M???

DAR
PAR

M???

PB
R

DB
R

M???

DBL

PBL
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Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic
abstractions is simple. Just number the states (domain values)
consecutively and generate a table of references to the states:

0

2

3

1

M???
PA

L

DA
L

M???

DAR
PAR

M???

PB
R

DB
R

M???

DBL

PBL

L R A B

0 1 2 3
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Abstraction Example: Merge Step

For product transition systems A1 ⊗A2, we again number the
product states consecutively and generate a table that links state
pairs of A1 and A2 to states of A:

LL LR

AL AR

BL BR

RL RR
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Abstraction Example: Merge Step

For product transition systems A1 ⊗A2, we again number the
product states consecutively and generate a table that links state
pairs of A1 and A2 to states of A:

0 1

4 5

6 7

2 3

s2 = 0 s2 = 1

s1 = 0 0 1
s1 = 1 2 3
s1 = 2 4 5
s1 = 3 6 7
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Maintaining the Abstraction when Shrinking

I The hard part in representing the abstraction is to keep it
consistent when shrinking.

I In theory, this is easy to do:
I When combining states i and j , arbitrarily use one of them

(say i) as the number of the new state.
I Find all table entries in the table for this abstraction which

map to the other state j and change them to i .

I However, doing a table scan each time two states are
combined is very inefficient.

I Fortunately, there also is an efficient implementation which
takes constant time per combination.
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Maintaining the Abstraction Efficiently

I Associate each abstract state with a linked list, representing
all table entries that map to this state.

I Before starting the shrink operation, initialize the lists by
scanning through the table, then discard the table.

I While shrinking, when combining i and j , splice the list
elements of j into the list elements of i .

I For linked lists, this is a constant-time operation.

I Once shrinking is completed, renumber all abstract states so
that there are no gaps in the numbering.

I Finally, regenerate the mapping table from the linked list
information.
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Abstraction Example: Shrink Step

Representation before shrinking:

0 1

4 5

6 7

2 3

s2 = 0 s2 = 1

s1 = 0 0 1
s1 = 1 2 3
s1 = 2 4 5
s1 = 3 6 7
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Abstraction Example: Shrink Step

1. Convert table to linked lists and discard it.

0 1

4 5

6 7

2 3

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0)}
list3 = {(1, 1)}
list4 = {(2, 0)}
list5 = {(2, 1)}
list6 = {(3, 0)}
list7 = {(3, 1)}

s2 = 0 s2 = 1

s1 = 0 0 1
s1 = 1 2 3
s1 = 2 4 5
s1 = 3 6 7
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Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1

4 5

6 7

2 3

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0)}
list3 = {(1, 1)}
list4 = {(2, 0)}
list5 = {(2, 1)}
list6 = {(3, 0)}
list7 = {(3, 1)}
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Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1

4 5

6 7

2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0)}
list5 = {(2, 1)}
list6 = {(3, 0)}
list7 = {(3, 1)}
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Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1

4 54 5

6 7

2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0)}
list5 = {(2, 1)}
list6 = {(3, 0)}
list7 = {(3, 1)}
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Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1

4

6 7

2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1)}
list5 = ∅
list6 = {(3, 0)}
list7 = {(3, 1)}
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Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1

4

6 76 7

2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1)}
list5 = ∅
list6 = {(3, 0)}
list7 = {(3, 1)}
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Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1

4

6

2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1)}
list5 = ∅
list6 = {(3, 0), (3, 1)}
list7 = ∅
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Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1

44

66

2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1)}
list5 = ∅
list6 = {(3, 0), (3, 1)}
list7 = ∅
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Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1 4 2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1),

(3, 0), (3, 1)}
list5 = ∅
list6 = ∅
list7 = ∅
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Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1 4 2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1),

(3, 0), (3, 1)}
list5 = ∅
list6 = ∅
list7 = ∅
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Abstraction Example: Shrink Step

3. Renumber abstract states consecutively.

0 1 47→3 2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1),

(3, 0), (3, 1)}
list5 = ∅
list6 = ∅
list7 = ∅
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Abstraction Example: Shrink Step

3. Renumber abstract states consecutively.

0 1 3 2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = {(2, 0), (2, 1),

(3, 0), (3, 1)}
list4 = ∅
list5 = ∅
list6 = ∅
list7 = ∅
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Abstraction Example: Shrink Step

4. Regenerate the mapping table from the linked lists.

0 1 3 2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = {(2, 0), (2, 1),

(3, 0), (3, 1)}
list4 = ∅
list5 = ∅
list6 = ∅
list7 = ∅
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Abstraction Example: Shrink Step

4. Regenerate the mapping table from the linked lists.

0 1 3 2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = {(2, 0), (2, 1),

(3, 0), (3, 1)}
list4 = ∅
list5 = ∅
list6 = ∅
list7 = ∅

s2 = 0 s2 = 1

s1 = 0 0 1
s1 = 1 2 2
s1 = 2 3 3
s1 = 3 3 3
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The Final Heuristic Representation

At the end, our heuristic is represented by six tables:

I three one-dimensional tables for the atomic abstractions:
Tpackage L R A B

0 1 2 3

Ttruck A L R

0 1

Ttruck B L R

0 1

I two tables for the two merge and subsequent shrink steps:

T 1
m&s s2 = 0 s2 = 1

s1 = 0 0 1
s1 = 1 2 2
s1 = 2 3 3
s1 = 3 3 3

T 2
m&s s2 = 0 s2 = 1

s1 = 0 1 1
s1 = 1 1 0
s1 = 2 2 2
s1 = 3 3 3

I one table with goal distances for the final transition system:

Th s = 0 s = 1 s = 2 s = 3

h(s) 3 2 1 0

Given a state s = {package 7→ p, truck A 7→ a, truck B 7→ b},
its heuristic value is then looked up as:

I h(s) = Th[T 2
m&s[T

1
m&s[Tpackage[p],Ttruck A[a]],Ttruck B[b]]]
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Generic Algorithm Template

Generic abstraction computation algorithm

abs := {T π{v} | v ∈ V }
while abs contains more than one abstraction:

select A1, A2 from abs
shrink A1 and/or A2 until size(A1) · size(A2) ≤ N
abs := abs \ {A1,A2} ∪ {A1 ⊗A2}

return the remaining abstraction in abs

N: parameter bounding number of abstract states

Remaining Questions:

I Which abstractions to select?  merging strategy

I How to shrink an abstraction?  shrinking strategy

We first need a bit more theory. . .
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C15.3 Safe and Exact
Transformations
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Collections of Transition Systems

Definition (Collection of Transition Systems)

A set X of transition systems is a collection of transition systems if
all T ∈ X have the same set of labels and the same cost function.
The combined system is TX :=

⊗
T ∈X T .
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Safe Transformations

Definition (Safe Transformation)

Let X and X ′ be collections of transition systems with label sets L
and L′ and cost functions c and c ′, respectively.

The transformation from X to X ′ is safe if there exist functions σ
and τ mapping the states and labels of TX to the states and labels
of TX ′ such that

I L′ = {τ(`) | ` ∈ L},
I c ′(τ(`)) ≤ c(`) for all ` ∈ L,

I if 〈s, `, t〉 is a transition of TX then 〈σ(s), τ(`), σ(t)〉 is a
transition of TX ′ , and

I if s is a goal state of TX then σ(s) is a goal state of TX ′ .
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Examples

X : Collection of transition systems

Replacement with Synchronized Product is Safe

Let T1, T2 ∈ X with T1 6= T2. The transformation from X to
X ′ := (X \ {T1, T2}) ∪ {T1 ⊗ T2} is safe with σ = id and τ = id.

Abstraction is Safe

Let α be an abstraction for Ti ∈ X . The transformation from X to
X ′ := (X \ {Ti}) ∪ {T αi } is safe with τ = id and
σ(〈s1, . . . , sn〉) = 〈s1, . . . , si−1, α(si ), si+1, . . . , sn〉.

(Proofs omitted.)
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Heuristic Properties (1)

Theorem

Let X and X ′ be collections of transition systems. If the
transformation from X to X ′ is safe with functions σ and τ then
h(s) = h∗TX ′ (σ(s)) is a safe, goal-aware, admissible, and consistent
heuristic for TX .

Proof.

We prove goal-awareness and consistency, the other properties
follow from these two.

Goal-awareness: For all goal states s? of TX , state σ(s?) is a goal
state of TX ′ and therefore h(s?) = h∗TX ′ (σ(s?)) = 0. . . .
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Heuristic Properties (2)

Proof (continued).

Consistency: Let c and c ′ be the label cost functions of X and X ′,
respectively. Consider state s of TX and transition 〈s, `, t〉.
As TX ′ has a transition 〈σ(s), τ(`), σ(t)〉, it holds that

h(s) = h∗TX ′ (σ(s))

≤ c ′(τ(`)) + h∗TX ′ (σ(t))

= c ′(τ(`)) + h(t)

≤ c(`) + h(t)

The second inequality holds due to the requirement on the label
costs.
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Exact Transformations

Definition (Exact Transformation)

Let X and X ′ be collections of transition systems with label sets L
and L′ and cost functions c and c ′, respectively.

The transformation from X to X ′ is exact if there exist functions σ
and τ mapping the states and labels of TX to the states and labels
of TX ′ such that

1 σ and τ satisfy the requirements of safe transformations,

2 if 〈s ′, `′, t ′〉 is a transition of TX ′ then 〈s, `, t〉 is a transition of
TX for all s ∈ σ−1(s ′), t ∈ σ−1(t ′) and some ` ∈ τ−1(`′),

3 if s ′ is a goal state of TX ′ then all states s ∈ σ−1(s ′) are goal
states of TX , and

4 c(`) = c ′(τ(`)) for all ` ∈ L.

 no “new” transitions and goal states, no cheaper labels
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Examples

Replacement with Synchronized Product is Exact

Let T1, T2 ∈ X with T1 6= T2. The transformation from X to
X ′ := (X \ {T1, T2}) ∪ {T1 ⊗ T2} is exact with σ = id and τ = id.

(Proof omitted.)

More examples will follow.
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Heuristic Properties with Exact Transformations (1)

Theorem

Let X and X ′ be collections of transition systems. If the
transformation from X to X ′ is exact with functions σ and τ then
h∗TX (s) = h∗TX ′ (σ(s)).

Proof.

As the transformation is safe, h∗TX ′ (σ(s)) is admissible for TX and

therefore h∗TX (s) ≥ h∗TX ′ (σ(s)).

For the other direction, we show that for every state s ′ of TX ′ and
goal path π′ for s ′, there is for each s ∈ σ−1(s ′) a goal path in TX
that has the same cost. . . .
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Heuristic Properties with Exact Transformations (2)

Proof (continued).

Proof via induction over the length of π′.

|π′| = 0: If s ′ is a goal state of TX ′ then each s ∈ σ−1(s ′) is a goal
state of TX and the empty path is a goal path for s in TX .

|π′| = i + 1: Let π′ = 〈s ′, `′, t ′〉π′t′ , where π′t′ is a goal path of
length i from t ′. Then there is for each t ∈ σ−1(t ′) a goal path πt
of the same cost in TX . Furthermore, for all s ∈ σ−1(s ′) there is a
label ` ∈ τ−1(`′) such that TX has a transition 〈s, `, t〉 with
t ∈ σ−1(t ′). The path π = 〈s, `, t〉πt is a solution for s in T . As `
and `′ must have the same cost and πt and π′t′ have the same
cost, π has the same cost as π′.
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Sequences of Transformations

Theorem (Sequences of Transformations)

Let X1, . . . ,Xn be collections of transition systems.
If for i ∈ {1, . . . , n − 1} the transformation from Xi to Xi+1 is safe
(exact) then the transformation from X1 to Xn is safe (exact).

Proof idea: The composition of the σ and τ functions of each step
satisfy the required conditions.
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Consequences

Generic Abstraction Computation Algorithm

abs := {T π{v} | v ∈ V } =: X0

while abs contains more than one abstract transition system:
select A1, A2 from abs
shrink A1 and/or A2 until size(A1) · size(A2) ≤ N
abs := abs \ {A1,A2} ∪ {A1 ⊗A2}

return the remaining abstract transition system in abs

I Initially Tabs is the concrete transition system.

I Each iteration performs a safe transformation of abs.
→ the corresponding abstraction heuristic is safe, goal-aware,
→ consistent, and admissible.

I If shrinking is exact, the corresponding heuristic is perfect.
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C15.4 Summary
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Summary

I Merge-and-shrink abstractions are represented by a set of
reference tables, one for each atomic abstraction and one for
each merge-and-shrink step.

I The heuristic representation uses an additional table for the
goal distances in the final abstract transition system.

I As we only use safe transformations, the resulting heuristic is
safe, goal-aware, admissible, and consistent.

I If we use only exact transformations, the resulting heuristic is
perfect.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 17, 2016 44 / 44


	Motivation
	Maintaining the Abstraction
	Safe and Exact Transformations
	Summary

