Planning and Optimization
C15. M&S: Maintaining the Mapping and Some Theory

Malte Helmert and Gabriele Roger

Universitat Basel

November 17, 2016

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 1/ 44

Planning and Optimization

November 17, 2016 — C15. M&S: Maintaining the Mapping and Some Theory
C15.1 Motivation
C15.2 Maintaining the Abstraction
(C15.3 Safe and Exact Transformations

C15.4 Summary

C15. M&S: Maintaining the Mapping and Some Theory Motivation

C15.1 Motivation

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 3/ 44

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 2 /44
C15. M&S: Maintaining the Mapping and Some Theory Motivation
Generic Algorithm Template
Generic Abstraction Computation Algorithm
abs .= {T™ | v eV}
while abs contains more than one abstract transition system:
select A1, Ay from abs
shrink A; and/or Aj until size(A;) - size(Az) < N
abs := abs \ {A1, A2} U{A; ® Ay}
return the remaining abstract transition system in abs
N: parameter bounding number of abstract states
Questions for practical implementation:
» How to represent the corresponding abstraction?
» Which abstractions to select? ~~ merging strategy
» How to shrink an abstraction? ~» shrinking strategy
» How to choose N7 ~- usually: as high as memory allows
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 4/ 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

C15.2 Maintaining the Abstraction

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 5/ 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

How to Represent the Abstraction? (1)

Idea: the computation of the abstraction follows the sequence of
product computations

» For the atomic abstractions my,), we generate a
one-dimensional table that denotes which value in dom(v)
corresponds to which abstract state in 7™V},

» During the merge (product) step A := A; ® Ay, we generate
a two-dimensional table that denotes which pair of states of
Aj and A5 corresponds to which state of A.

» During the shrink (abstraction) steps, we make sure to keep
the table in sync with the abstraction choices.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 6 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

How to Represent the Abstraction? (2)

Idea: the computation of the abstraction mapping follows the
sequence of product computations

> Once we have computed the final abstract transition system,
we compute all abstract goal distances and store them in a
one-dimensional table.

» At this point, we can throw away all the abstract transition
systems — we just need to keep the tables.

» During search, we do a sequence of table lookups to navigate
from the atomic abstraction states to the final abstract state
and heuristic value
~ 2|V| lookups, O(|V]) time

Again, we illustrate the process with our running example.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 7/ 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic
abstractions is simple. Just number the states (domain values)
consecutively and generate a table of references to the states:

Mxxx

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 8 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic
abstractions is simple. Just number the states (domain values)
consecutively and generate a table of references to the states:

Mxxx

Mkexx
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016
C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Merge Step

For product transition systems A; ® A2, we again number the
product states consecutively and generate a table that links state
pairs of A; and Aj to states of A:

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 10 / 44

Abstraction Example: Merge Step

For product transition systems A; ® Ay, we again number the
product states consecutively and generate a table that links state
pairs of A; and A5 to states of A:

52:0 52:1
s1=0 0 1
51:1 2 3
S = 4 5
51:3 6 7

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Maintaining the Abstraction when Shrinking

» The hard part in representing the abstraction is to keep it
consistent when shrinking.
> In theory, this is easy to do:
» When combining states i and j, arbitrarily use one of them
(say i) as the number of the new state.
» Find all table entries in the table for this abstraction which
map to the other state j and change them to .
» However, doing a table scan each time two states are
combined is very inefficient.

» Fortunately, there also is an efficient implementation which
takes constant time per combination.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 12 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Maintaining the Abstraction Efficiently

> Associate each abstract state with a linked list, representing
all table entries that map to this state.

» Before starting the shrink operation, initialize the lists by
scanning through the table, then discard the table.

> While shrinking, when combining i and j, splice the list
elements of j into the list elements of /.

» For linked lists, this is a constant-time operation.

» Once shrinking is completed, renumber all abstract states so
that there are no gaps in the numbering.

> Finally, regenerate the mapping table from the linked list
information.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 13 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step

Representation before shrinking:

‘ Sy = 0 Sy = 1
s1=0 0 1
S1 = 1 2 3
S = 4 5
S1 3 6 7
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 14 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step

1. Convert table to linked lists and discard it.

listy = {(0,0)}

listy = {(0,1)}

list, = {(1,0)}

lists = {(1,1)}

list, = {(2,0)}

lists = {(2,1)}

lists = {(3,0)}

list; = {(3,1)}

‘ Sy = 0 So = 1

s1=0 0 1
S1 = 1 2 3
S1 = 2 4 5
s1=3 6 7

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 15 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step

2. When combining i and j, splice list; into list;.

listg = {(O, 0

)}
list, = {(0,1)}
list, = {(1,0)}
lists = {(1,1)}
lists = {(2,0)}
lists — {(2,1)}
lists = {(3.0)}
list, = {(3.1)}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 16 / 44

C15. M&S: Maintaining the Mapping and Some Theory

Abstraction Example: Shrink Step

2. When combining i and j, splice list; into list;.

listy = {(0,0)}

listy = {(0,1)}

list = {(1,0), (1, 1)}
lists = [0}

lists = {(2,0)}

lists = {(2,1)}

lists = {(3,0)}

list, = {(3,1)}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016

Maintaining the Abstraction

17 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step
2. When combining i and j, splice list; into list;.

listo = {(0,0)}

listy = {(0,1)}

list, = {(1,0),(1,1)}
listy =)

lista = {(2,0)}

lists = {(2,1)}

lists = {(3,0)}

list; = {(3,1)}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 18 / 44

C15. M&S: Maintaining the Mapping and Some Theory

Abstraction Example: Shrink Step

2. When combining i and j, splice list; into list;.

listo = {(0,0)}
listy = {(0,1)}
Ii5t2 = {(17 0)7 (17 1)}

lists = 1]
listy = {(2,0),(2,1)}
lists = @

lists = {(3,0)}
list; = {(3,1)}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016

Maintaining the Abstraction

19 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step

2. When combining i and j, splice list; into list;.

listo = {(0,0)}
listy = {(0,1)}
/i5t2 = {(]—7 0)7 (17 1)}

lists = 1]
lists = {(2,0),(2,1)}
lists = 1]

lists = {(3,0)}
list; = {(3,1)}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 20 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step

2. When combining i and j, splice list; into list;.

listo = {(0,0)}
list; = {(0,1)}

list, = {(17 0)7 (17 1)}
list; = [0}

lists = {(2,0), (2, 1)}

lists = 0
lists = {(3,0),(3,1)}
list; = 0
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 21 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step

2. When combining i and j, splice list; into list;.

listo = {(0,0)}
e listy = {(0,1)}
/ list: = {(1,0), (1,1))
‘ list; = [0}
Gt o =levan
\ lists = 0
\e/ lists = {(3,0), (3, 1)}

list; = 1]

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 22 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step
2. When combining i and j, splice list; into list;.

listo = {(0,0)}
listy = {(0,1)}
list, = {(1,0), (1,1)}

listy =)

listy = {(2, O), (27].)7
3,0).(3.1))

lists = 0

lists = 1]

list; = 1]

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 23 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step
2. When combining i and j, splice list; into list;.

listo = {(0,0)}

listy = {(0,1)}

list, = {(1,0),(1,1)}

listy =)

lista = {(2,0),(2,1),
(3.0).(3.1)}

/iSts = @
lists = ()
list; = 0
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 24 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step
3. Renumber abstract states consecutively.

listo = {(0,0)}
listy = {(0,1)}

list, = {(1,0), (1,1)}

lists = 0
lists = {(2,0), (2,1),
(3,0),(3,1)}
lists = 0
liste = 0
list; = 1]
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 25 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step

3. Renumber abstract states consecutively.

listo = {(0,0)}
list, = {(0,1)}
list, = {(1,0), (1,1)}
lists = {(2,0), (2,1),
(3,0),(3,1)}
listy = 0
lists = 0
liste =0
list; = 1]
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 26 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step

4. Regenerate the mapping table from the linked lists.

listo = {(0,0)}

list, = {(0,1)}

list, = {(1,0), (1,1)}

lists = {(2,0), (2, 1),
(3,0),(3,1)}

listy = @
/i5t5 = @
lists = ()
list; = 1]
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 27 | 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

Abstraction Example: Shrink Step

4. Regenerate the mapping table from the linked lists.

listo = {(0,0)}

list, = {(0,1)}

list, = {(1,0), (1,1)}

lists = {(2,0), (2, 1),
(3,0),(3,1)}

listy = [0}

lists = 0

lists = ()

list; = 1]

‘ =0 s=1

s1=0 0 1
si=1 2 2
s1=2 3 3
s1=3 3 3

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 28 / 44

C15. M&S: Maintaining the Mapping and Some Theory Maintaining the Abstraction

The Final Heuristic Representation

At the end, our heuristic is represented by six tables:

» three one-dimensional tables for the atomic abstractions:
Tpackage ‘ L R A B 7—truckA ‘ L R 7—tI'LICkB ‘ L R
0 1 2 3 0 1 0 1

> two tables for the two merge and subsequent shrink steps:

Tr}1&s \5220 =1 Ti&s \52:0 =1

s1=0 0 1 s51=0 1 1
51:1 2 2 51:1 1 0
51 =2 3 3 s51=2 2 2
s1=3 3 3 s51=3 3 3

> one table with goal distances for the final transition system:

T, |s=0 s=1 s=2 s=3
(s)| 3 2 1 0

Given a state s = {package — p, truck A — a, truck B — b},
its heuristic value is then looked up as:

> h(S) = Th[Tr%&s[Tnlq&s[Tpackage[p]a Ttruck A[a]]a Ttruck B[b]]]

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 29 / 44

C15. M&S: Maintaining the Mapping and Some Theory

Generic Algorithm Template

Generic abstraction computation algorithm

abs .= {T™ | v eV}

while abs contains more than one abstraction:
select A1, Ay from abs
shrink A; and/or Aj until size(A;) - size(Az) < N
abs := abs \ {A1, A2} U {A1 ® Az}

return the remaining abstraction in abs

N: parameter bounding number of abstract states

Remaining Questions:
» Which abstractions to select? ~» merging strategy
» How to shrink an abstraction? ~- shrinking strategy

We first need a bit more theory. ..

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016

Maintaining the Abstraction

30 / 44

C15. M&S: Maintaining the Mapping and Some Theory Safe and Exact Transformations

C15.3 Safe and Exact

Transformations

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 31 /44

C15. M&S: Maintaining the Mapping and Some Theory

Collections of Transition Systems

Definition (Collection of Transition Systems)

A set X of transition systems is a collection of transition systems if
all 7 € X have the same set of labels and the same cost function.
The combined system is Tx := Q7cx T -

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016

Safe and Exact Transformations

32/ 44

C15. M&S: Maintaining the Mapping and Some Theory Safe and Exact Transformations

Safe Transformations

Definition (Safe Transformation)

Let X and X’ be collections of transition systems with label sets L
and L" and cost functions ¢ and ¢’, respectively.

The transformation from X to X’ is safe if there exist functions o
and 7 mapping the states and labels of Tx to the states and labels
of Txs such that

» U'={r(0)| L e L},

» (7(0)) < c(¥) forall £ € L,

» if (s,£,t) is a transition of Tx then (o(s),7(¢),c(t)) is a
transition of T, and

» if s is a goal state of Tx then o(s) is a goal state of Tx:.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 33 / 44

C15. M&S: Maintaining the Mapping and Some Theory

Examples

X: Collection of transition systems

Replacement with Synchronized Product is Safe

Let 71,72 € X with T; # T5. The transformation from X to
X' = (X\{T1,T2}) U{T1 ® T2} is safe with 0 = id and 7 = id.

Abstraction is Safe

Let a be an abstraction for 7; € X. The transformation from X to
X' = (X\{Ti}) U{T;*} is safe with 7 = id and

O'(<51, N ,5n>) = <51, e ,S,'_l,Od(S,'), Sitls--- ,Sn>.

(Proofs omitted.)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016

Safe and Exact Transformations

34 / 44

C15. M&S: Maintaining the Mapping and Some Theory Safe and Exact Transformations

Heuristic Properties (1)

Theorem

Let X and X' be collections of transition systems. If the
transformation from X to X' is safe with functions o and T then
h(s) = h%(/(a(s)) is a safe, goal-aware, admissible, and consistent
heuristic for Tx.

Proof.
We prove goal-awareness and consistency, the other properties
follow from these two.

Goal-awareness: For all goal states s, of Tx, state o(s,) is a goal
state of Tx/ and therefore h(s,) = hi‘rx, (o(se)) =0.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 35 / 44

C15. M&S: Maintaining the Mapping and Some Theory

Heuristic Properties (2)

Proof (continued).

Consistency: Let ¢ and ¢’ be the label cost functions of X and X’,
respectively. Consider state s of Tx and transition (s, /¢, t).
As Tx: has a transition (o(s), 7(¢),o(t)), it holds that

h(s) = h,(o(s))
< d(r(0)) + b7, (o(t))
= c'(7(¢)) + h(t)

< c(¢) + h(t)

The second inequality holds due to the requirement on the label
costs. L]

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016

Safe and Exact Transformations

36 / 44

C15. M&S: Maintaining the Mapping and Some Theory Safe and Exact Transformations

Exact Transformations

Definition (Exact Transformation)
Let X and X’ be collections of transition systems with label sets L
and L’ and cost functions ¢ and ¢/, respectively.

The transformation from X to X’ is exact if there exist functions o
and 7 mapping the states and labels of Tx to the states and labels
of Tx: such that

© o and 7 satisfy the requirements of safe transformations,

Q if (s/,¢', ') is a transition of Tx: then (s, ¢, t) is a transition of
Tx forall s € 07 1(s'), t € o7 1(t') and some ¢ € 771(¢),

© if s’ is a goal state of Tx: then all states s € 0~1(s’) are goal
states of Tx, and

Q c(0) = (r(¢)) forall £ € L.
~+ no “new"” transitions and goal states, no cheaper labels

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 37 / 44

C15. M&S: Maintaining the Mapping and Some Theory Safe and Exact Transformations

Examples

Replacement with Synchronized Product is Exact

Let 71,72 € X with 71 # T5. The transformation from X to
X':=(X\{T1,T2}) U{T1 ® T2} is exact with o = id and 7 = id.

(Proof omitted.)

More examples will follow.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 38 / 44

C15. M&S: Maintaining the Mapping and Some Theory Safe and Exact Transformations

Heuristic Properties with Exact Transformations (1)

Theorem

Let X and X' be collections of transition systems. If the
transformation from X to X' is exact with functions o and T then

h (s) = hy, (o(s))-

Proof.

As the transformation is safe, h7 (o(s)) is admissible for Tx and
therefore h7, (s) > hi (o(s)).

For the other direction, we show that for every state s’ of Tx: and
goal path 7/ for s/, there is for each s € 071(s’) a goal path in Tx
that has the same cost.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 39 / 44

C15. M&S: Maintaining the Mapping and Some Theory Safe and Exact Transformations

Heuristic Properties with Exact Transformations (2)

Proof (continued).

Proof via induction over the length of /.

\7'| = 0: If s’ is a goal state of Tx: then each s € 0~1(s') is a goal
state of Tx and the empty path is a goal path for s in 7.

7| =i+ 1: Let ' = (', ¢, t')7},, where 7}, is a goal path of
length i from t’. Then there is for each t € o~1(t') a goal path 7;
of the same cost in Tx. Furthermore, for all s € 0~ 1(s') there is a
label £ € 771(¢") such that Tx has a transition (s, £, t) with

t € 0~ (t'). The path m = (s, £, t)m; is a solution for s in T. As ¢
and ¢/ must have the same cost and 7 and 7}, have the same
cost, m has the same cost as 7’. OJ

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 40 / 44

C15. M&S: Maintaining the Mapping and Some Theory

Sequences of Transformations

Theorem (Sequences of Transformations)

Let Xi,...,X, be collections of transition systems.
If fori € {1,...,n— 1} the transformation from X; to Xj;1 is safe
(exact) then the transformation from Xi to X, is safe (exact).

Proof idea: The composition of the o and 7 functions of each step
satisfy the required conditions.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016

41

Safe and Exact Transformations

44

C15. M&S: Maintaining the Mapping and Some Theory Safe and Exact Transformations

Consequences

Generic Abstraction Computation Algorithm

abs .= {T™ |[ve V} = Xp

while abs contains more than one abstract transition system:
select Ay, Ao from abs
shrink A; and/or Aj until size(A;) - size(Az) < N
abs := abs \ {A1, A2} U {A1 ® Az}

return the remaining abstract transition system in abs

» Initially T,ps is the concrete transition system.

» Each iteration performs a safe transformation of abs.
— the corresponding abstraction heuristic is safe, goal-aware,
consistent, and admissible.

» If shrinking is exact, the corresponding heuristic is perfect.
M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization November 17, 2016 42 / 44

C15. M&S: Maintaining the Mapping and Some Theory Summary

C15.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016

43

44

C15. M&S: Maintaining the Mapping and Some Theory Summary

Summary

» Merge-and-shrink abstractions are represented by a set of
reference tables, one for each atomic abstraction and one for
each merge-and-shrink step.

> The heuristic representation uses an additional table for the
goal distances in the final abstract transition system.

> As we only use safe transformations, the resulting heuristic is
safe, goal-aware, admissible, and consistent.

> If we use only exact transformations, the resulting heuristic is
perfect.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2016 44 / 44

	Motivation
	Maintaining the Abstraction
	Safe and Exact Transformations
	Summary

