

Planning and Optimi October 27, 2016 — C3. Delete	zation e Relaxation: AND/OR Graphs		
C3.1 AND/OR Gr	aphs		
C3.2 Forced Nodes			
C3.3 Most and Least Conservative Valuation			
C3.4 Summary			
M. Helmert, G. Röger (Universität Basel)	Planning and Optimization	October 27, 2016	2 / 29

Planning and Optimization

AND/OR Graphs

AND/OR Graphs

Definition (AND/OR Graph)

An AND/OR graph $\langle N, A, type \rangle$ is a directed graph $\langle N, A \rangle$ with a node label function type: $N \to \{\land, \lor\}$ partitioning nodes into

- ▶ AND nodes $(type(v) = \wedge)$ and
- ▶ OR nodes $(type(v) = \lor)$.

We write succ(n) for the successors of node $n \in N$, i.e., $succ(n) = \{n' \in N \mid \langle n, n' \rangle \in A\}.$

Note: We draw AND nodes as squares and OR nodes as circles.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

October 27, 2016

5 / 29

7 / 29

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

Some Partial Answers

- ► We already know from our previous example that consistent valuations are in general not unique.
- ▶ We will now study two special kinds of valuations:
 - the most conservative valuation
 - ▶ the least conservative valuation
- ▶ We show that these two valuations are always consistent and can be computed efficiently.
- ▶ We also show that all consistent valuations lie "in between" these two valuations.
- In particular, an AND/OR graph has a unique consistent valuation iff its most and least conservative valuation coincide.

Planning and Optimization

October 27, 2016 13 / 29

Forced Nodes

Forced Nodes

C3. Delete Relaxation: AND/OR Graphs

C3. Delete Relaxation: AND/OR Graphs

Forced True Nodes

Let G be an AND/OR graph.

The set of nodes of G that are forced true is defined by finite application of the following rules:

- ▶ If *n* is an AND node where all successors are forced true, then n is forced true.
- ▶ If *n* is an OR node where at least one successor is forced true, then *n* is forced true.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization October 27, 2016

14 / 29

Remarks on Forced Nodes

Forced Nodes and Consistent Valuations

Notes:

- Forced nodes are well-defined because the rules defining them are monotonic.
- They can be computed in linear time in the size of the graph.
- There exists at least one forced true node iff the graph has an AND node without successors.
- There exists at least one forced false node iff the graph has an OR node without successors.

M. Helmert, G. Röger (Universität Basel)

October 27, 2016

Forced Node

17 / 29

Forced Nodes

C3. Delete Relaxation: AND/OR Graphs

Forced Nodes and Consistent Valuations: Proof (1)

Planning and Optimization

Proof.

We prove the property of forced true nodes. The property of forced false nodes can be proved analogously.

Proof by contradiction: assume that there is a consistent valuation α and a forced true node $n \in N_T$ with $\alpha(n) \neq T$, i.e., $\alpha(n) = F$. Let $N_T = \{n_1, \ldots, n_k\}$, where the nodes are ordered in a way that matches a possible sequence of rule applications:

Planning and Optimization

i.e., the *i*-th rule application derives that n_i is forced true.

Let n_i be the first node in the order with $\alpha(n_i) = \mathbf{F}$. Hence, $\alpha(n_j) = \mathbf{T}$ for all j < i.

Theorem

C3. Delete Relaxation: AND/OR Graphs

Let G be an AND/OR graph with nodes N. Let $N_{\mathbf{T}} \subseteq N$ be the forced true nodes of G, and let $N_{\mathbf{F}} \subseteq N$ be the forced false nodes of G. Let $\alpha : N \to \{\mathbf{T}, \mathbf{F}\}$ be a consistent valuation of G. Then:

- $\alpha(n) = \mathbf{T}$ for all $n \in N_{\mathbf{T}}$
- $\alpha(n) = \mathbf{F}$ for all $n \in N_{\mathbf{F}}$

This property explains why they are called forced nodes.

M. Helmert, G. Röger (Universität Basel)

October 27, 2016 18 / 29

C3. Delete Relaxation: AND/OR Graphs

Forced Nodes

Forced Nodes and Consistent Valuations: Proof (2)

Planning and Optimization

Proof (continued).

Case 1: n_i is an AND node.

In the *i*-th rule application, n_i is shown as forced true, so all its successors must have been shown as forced true in an earlier rule application.

Hence all nodes in $succ(n_i)$ are of the form n_j with j < i. By the choice of n_i , we have $\alpha(n_j) = \mathbf{T}$ for all these nodes.

We conclude $\alpha \not\models n_i$ and $\alpha \models \bigwedge_{n' \in succ(n_i)} n'$, which shows that α is not consistent: a contradiction.

. . .

C3. Delete Relaxation: AND/OR Graphs Most and Least Conservative Valuations And Least Conservative Valuations And Consistent
Canal Consistent Valuations and Consistent.
α^G_{mcv} is consistent.
α^G_{mcv} is consistent.
For all consistent valuations α of G, on(α^G_{mcv}) ⊆ on(α) ⊆ on(α^G_{lcv}).
It follows that:
Consistent valuations always exist and can be efficiently computed.
All consistent valuations lie between the most and least conservative one.
There is a unique consistent valuation iff α^G_{mcv} = α^G_{lcv},

or equivalently iff each node is forced true or forced false.

Planning and Optimization

C3. Delete Relaxation: AND/OR Graphs

24 / 29

Most and Least Conservative Valuation

Most and Least Conservative Valuation

MCV/LCV are Consistent: Proof (1)

Proof.

We prove part 1. Part 2 is analogous, and part 3 follows directly from the previous result and the definitions of α_{mcv}^{G} and α_{lcv}^{G} .

To prove part 1, we must show that α_{mcv}^{G} satisfies the consistency condition for every node *n*. Consider any node *n*.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

October 27, 2016

Most and Least Conservative Valuation

25 / 29

27 / 29

C3. Delete Relaxation: AND/OR Graphs

Planning and Optimization

MCV/LCV are Consistent: Proof (2)

Most and Least Conservative Valuation

Proof (continued).

Case 1a: *n* is an AND node and *n* is forced true.

All successors of n are forced true. (Otherwise *n* would not be forced true.) Then $\alpha_{mcv}^{\mathcal{G}}$ maps *n* and all its successors to **T**, satisfying the consistency condition for n.

Case 1b: *n* is an AND node and *n* is not forced true.

At least one successor n' of n is not forced true. (Otherwise *n* would be forced true.) Then α_{mcv}^{G} maps *n* and *n'* to false, satisfying the consistency condition for n.

M. Helmert, G. Röger (Universität Basel)

October 27, 2016

26 / 29

Planning and Optimization

Summary

- AND/OR graphs are directed graphs with AND nodes and OR nodes.
- ► We can assign truth values to AND/OR graph nodes.
- Such valuations are called consistent if they match the intuitive meaning of "AND" and "OR".
- Consistent valuations always exist.
- Consistent valuations can be computed efficiently.
- ► All consistent valuations fall between two extremes:
 - the most conservative valuation, where only nodes that are forced to be true are true
 - the least conservative valuation, where all nodes that are not forced to be false are true

Planning and Optimization

October 27, 2016 29 / 29