
Planning and Optimization
C2. Delete Relaxation: Finding Relaxed Plans

Malte Helmert and Gabriele Röger

Universität Basel

October 24, 2016

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 24, 2016 1 / 16

Planning and Optimization
October 24, 2016 — C2. Delete Relaxation: Finding Relaxed Plans

C2.1 Greedy Algorithm

C2.2 Optimal Relaxed Plans

C2.3 Discussion

C2.4 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 24, 2016 2 / 16

Finding Relaxed Plans

Using the results from the previous chapter, we are now ready
to study the problem of finding plans for relaxed planning tasks.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 24, 2016 3 / 16

C2. Delete Relaxation: Finding Relaxed Plans Greedy Algorithm

C2.1 Greedy Algorithm

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 24, 2016 4 / 16

C2. Delete Relaxation: Finding Relaxed Plans Greedy Algorithm

Monotonicity of Relaxed Planning Tasks

We need one final property before we can provide an algorithm
for solving relaxed planning tasks.

Lemma (Monotonicity)

Let s be a state in which relaxed operator o+ is applicable.
Then sJo+K dominates s.

Proof.

Since relaxed operators only have positive effects,
we have on(s) ⊆ on(s) ∪ [eff(o+)]s = on(sJo+K).

 Together with our previous results, this means that
making a transition in a relaxed planning task never hurts.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 24, 2016 5 / 16

C2. Delete Relaxation: Finding Relaxed Plans Greedy Algorithm

Greedy Algorithm for Relaxed Planning Tasks

The relaxation and monotonicity lemmas suggest the following
algorithm for solving relaxed planning tasks:

Greedy Planning Algorithm for 〈V , I ,O+, γ〉
s := I
π+ := 〈〉
loop forever:

if s |= γ:
return π+

else if there is an operator o+ ∈ O+ applicable in s
with sJo+K 6= s:

Append such an operator o+ to π+.
s := sJo+K

else:
return unsolvable

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 24, 2016 6 / 16

C2. Delete Relaxation: Finding Relaxed Plans Greedy Algorithm

Correctness of the Greedy Algorithm

The algorithm is sound:

I If it returns a plan, this is indeed a correct solution.
I If it returns “unsolvable”, the task is indeed unsolvable

I Upon termination, there clearly is no relaxed plan from s.
I By iterated application of the monotonicity lemma,

s dominates I .
I By the relaxation lemma, there is no solution from I .

What about completeness (termination) and runtime?

I Each iteration of the loop adds at least one atom to on(s).

I This guarantees termination after at most |V | iterations.

I Thus, the algorithm can clearly be implemented
to run in polynomial time.

I A good implementation runs in O(‖Π‖).

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 24, 2016 7 / 16

C2. Delete Relaxation: Finding Relaxed Plans Greedy Algorithm

Using the Greedy Algorithm as a Heuristic

We can apply the greedy algorithm within heuristic search:

I When evaluating a state s in progression search,
solve relaxation of planning task with initial state s.

I When evaluating a subgoal ϕ in regression search,
solve relaxation of planning task with goal ϕ.

I Set h(s) to the cost of the generated relaxed plan.

Is this an admissible heuristic?

I Yes if the relaxed plans are optimal
(due to the plan preservation corollary).

I However, usually they are not, because our greedy
relaxed planning algorithm is very poor.

(What about safety? Goal-awareness? Consistency?)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 24, 2016 8 / 16

C2. Delete Relaxation: Finding Relaxed Plans Optimal Relaxed Plans

C2.2 Optimal Relaxed Plans

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 24, 2016 9 / 16

C2. Delete Relaxation: Finding Relaxed Plans Optimal Relaxed Plans

The Set Cover Problem

To obtain an admissible heuristic, we must compute
optimal relaxed plans. Can we do this efficiently?

This question is related to the following problem:

Problem (Set Cover)

Given: a finite set U, a collection of subsets C = {C1, . . . ,Cn}
with Ci ⊆ U for all i ∈ {1, . . . , n}, and a natural number K .
Question: Is there a set cover of size at most K , i.e.,
a subcollection S = {S1, . . . ,Sm} ⊆ C
with S1 ∪ · · · ∪ Sm = U and m ≤ K?

The following is a classical result from complexity theory:

Theorem (Karp 1972)

The set cover problem is NP-complete.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 24, 2016 10 / 16

C2. Delete Relaxation: Finding Relaxed Plans Optimal Relaxed Plans

Complexity of Optimal Relaxed Planning (1)

Theorem (Complexity of Optimal Relaxed Planning)

The BCPlanEx problem restricted to delete-relaxed
planning tasks is NP-complete.

Proof.

For membership in NP, guess a plan and verify.

It is sufficient to check plans of length at most |V |
where V is the set of state variables, so this can be done
in nondeterministic polynomial time.

For hardness, we reduce from the set cover problem. . . .

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 24, 2016 11 / 16

C2. Delete Relaxation: Finding Relaxed Plans Optimal Relaxed Plans

Complexity of Optimal Relaxed Planning (2)

Proof (continued).

Given a set cover instance 〈U,C ,K 〉, we generate the following
relaxed planning task Π+ = 〈V , I ,O+, γ〉:
I V = U

I I = {v 7→ F | v ∈ V }
I O+ = {〈>,

∧
v∈Ci

v , 1〉 | Ci ∈ C}
I γ =

∧
v∈U v

If S is a set cover, the corresponding operators form a plan.
Conversely, each plan induces a set cover by taking the subsets
corresponding to the operators. There exists a plan of cost
at most K iff there exists a set cover of size K .

Moreover, Π+ can be generated from the set cover instance
in polynomial time, so this is a polynomial reduction.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 24, 2016 12 / 16

C2. Delete Relaxation: Finding Relaxed Plans Discussion

C2.3 Discussion

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 24, 2016 13 / 16

C2. Delete Relaxation: Finding Relaxed Plans Discussion

Using Relaxations in Practice

How can we use relaxations for heuristic planning in practice?

Different possibilities:

I Implement an optimal planner for relaxed planning tasks
and use its solution costs as estimates, even though
optimal relaxed planning is NP-hard.
 h+ heuristic

I Do not actually solve the relaxed planning task,
but compute an approximation of its solution cost.
 hmax heuristic, hadd heuristic, hLM-cut heuristic

I Compute a solution for relaxed planning tasks
which is not necessarily optimal, but “reasonable”.
 hFF heuristic

 more in the following chapters

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 24, 2016 14 / 16

C2. Delete Relaxation: Finding Relaxed Plans Summary

C2.4 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 24, 2016 15 / 16

C2. Delete Relaxation: Finding Relaxed Plans Summary

Summary

I Because of their monotonicity property, delete-relaxed tasks
can be solved in polynomial time by a greedy algorithm.

I However, the solution quality of this algorithm is poor.

I For an informative heuristic, we would ideally want to find
optimal relaxed plans.

I However, the bounded-cost plan existence problem
for relaxed planning tasks is NP-complete.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 24, 2016 16 / 16

	Greedy Algorithm
	Optimal Relaxed Plans
	Discussion
	Summary

