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Finding Relaxed Plans

Using the results from the previous chapter, we are now ready
to study the problem of finding plans for relaxed planning tasks.
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C2.1 Greedy Algorithm
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Monotonicity of Relaxed Planning Tasks

We need one final property before we can provide an algorithm
for solving relaxed planning tasks.

Lemma (Monotonicity)

Let s be a state in which relaxed operator o+ is applicable.
Then sJo+K dominates s.

Proof.

Since relaxed operators only have positive effects,
we have on(s) ⊆ on(s) ∪ [eff(o+)]s = on(sJo+K).

 Together with our previous results, this means that
making a transition in a relaxed planning task never hurts.
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Greedy Algorithm for Relaxed Planning Tasks

The relaxation and monotonicity lemmas suggest the following
algorithm for solving relaxed planning tasks:

Greedy Planning Algorithm for 〈V , I ,O+, γ〉
s := I
π+ := 〈〉
loop forever:

if s |= γ:
return π+

else if there is an operator o+ ∈ O+ applicable in s
with sJo+K 6= s:

Append such an operator o+ to π+.
s := sJo+K

else:
return unsolvable
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Correctness of the Greedy Algorithm

The algorithm is sound:

I If it returns a plan, this is indeed a correct solution.
I If it returns “unsolvable”, the task is indeed unsolvable

I Upon termination, there clearly is no relaxed plan from s.
I By iterated application of the monotonicity lemma,

s dominates I .
I By the relaxation lemma, there is no solution from I .

What about completeness (termination) and runtime?

I Each iteration of the loop adds at least one atom to on(s).

I This guarantees termination after at most |V | iterations.

I Thus, the algorithm can clearly be implemented
to run in polynomial time.

I A good implementation runs in O(‖Π‖).
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Using the Greedy Algorithm as a Heuristic

We can apply the greedy algorithm within heuristic search:

I When evaluating a state s in progression search,
solve relaxation of planning task with initial state s.

I When evaluating a subgoal ϕ in regression search,
solve relaxation of planning task with goal ϕ.

I Set h(s) to the cost of the generated relaxed plan.

Is this an admissible heuristic?

I Yes if the relaxed plans are optimal
(due to the plan preservation corollary).

I However, usually they are not, because our greedy
relaxed planning algorithm is very poor.

(What about safety? Goal-awareness? Consistency?)
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C2.2 Optimal Relaxed Plans
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The Set Cover Problem

To obtain an admissible heuristic, we must compute
optimal relaxed plans. Can we do this efficiently?

This question is related to the following problem:

Problem (Set Cover)

Given: a finite set U, a collection of subsets C = {C1, . . . ,Cn}
with Ci ⊆ U for all i ∈ {1, . . . , n}, and a natural number K .
Question: Is there a set cover of size at most K , i.e.,
a subcollection S = {S1, . . . ,Sm} ⊆ C
with S1 ∪ · · · ∪ Sm = U and m ≤ K?

The following is a classical result from complexity theory:

Theorem (Karp 1972)

The set cover problem is NP-complete.
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Complexity of Optimal Relaxed Planning (1)

Theorem (Complexity of Optimal Relaxed Planning)

The BCPlanEx problem restricted to delete-relaxed
planning tasks is NP-complete.

Proof.

For membership in NP, guess a plan and verify.

It is sufficient to check plans of length at most |V |
where V is the set of state variables, so this can be done
in nondeterministic polynomial time.

For hardness, we reduce from the set cover problem. . . .
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Complexity of Optimal Relaxed Planning (2)

Proof (continued).

Given a set cover instance 〈U,C ,K 〉, we generate the following
relaxed planning task Π+ = 〈V , I ,O+, γ〉:
I V = U

I I = {v 7→ F | v ∈ V }
I O+ = {〈>,

∧
v∈Ci

v , 1〉 | Ci ∈ C}
I γ =

∧
v∈U v

If S is a set cover, the corresponding operators form a plan.
Conversely, each plan induces a set cover by taking the subsets
corresponding to the operators. There exists a plan of cost
at most K iff there exists a set cover of size K .

Moreover, Π+ can be generated from the set cover instance
in polynomial time, so this is a polynomial reduction.
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C2.3 Discussion
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Using Relaxations in Practice

How can we use relaxations for heuristic planning in practice?

Different possibilities:

I Implement an optimal planner for relaxed planning tasks
and use its solution costs as estimates, even though
optimal relaxed planning is NP-hard.
 h+ heuristic

I Do not actually solve the relaxed planning task,
but compute an approximation of its solution cost.
 hmax heuristic, hadd heuristic, hLM-cut heuristic

I Compute a solution for relaxed planning tasks
which is not necessarily optimal, but “reasonable”.
 hFF heuristic

 more in the following chapters
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C2.4 Summary
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Summary

I Because of their monotonicity property, delete-relaxed tasks
can be solved in polynomial time by a greedy algorithm.

I However, the solution quality of this algorithm is poor.

I For an informative heuristic, we would ideally want to find
optimal relaxed plans.

I However, the bounded-cost plan existence problem
for relaxed planning tasks is NP-complete.
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