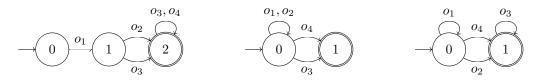
Planning and Optimization

M. Helmert, G. Röger T. Keller, M. Wehrle University of Basel Fall Semester 2016

Exercise Sheet 11 Due: December 14, 2016

Exercise 11.1 (1+2+2 marks)

Consider the planning task $\Pi = \langle V, I, O, \gamma \rangle$ with $V = \{a, b, c\}$, $I = \{a \mapsto 0, b \mapsto 0, c \mapsto 0\}$, $O = \{o_1, o_2, o_3, o_4\}$ and $\gamma = (a = 2 \land b = 1 \land c = 1)$. The cost of each operator is 1. The atomic abstractions to each variable are given below (atomic abstraction to a on the left, to b in the middle, and to c on the right).



(a) For abstractions $\alpha_1, \ldots, \alpha_n$, the uniform cost partitioning is defined for all $o \in O$ and $1 \le i \le n$ by

 $cost_i(o) := \begin{cases} \frac{cost(o)}{n_o} & \text{if } \alpha_i \text{ contains a transition } s \xrightarrow{o} t \text{ with } s \neq t \\ 0 & \text{otherwise,} \end{cases}$

where n_o is the number of abstractions which contain a transition $s \xrightarrow{o} t$ with $s \neq t$. Compute the uniform cost partitioning and the corresponding heuristic value in the initial state I.

- (b) For abstractions $\alpha_1, \ldots, \alpha_n$, the zero-one cost partitioning is defined for all $o \in O$ by $cost_i(o) := cost(o)$ for exactly one $i \in \{1, \ldots, n\}$, and $cost_j(o) := 0$ for $j \neq i$. Compute a zero-one cost partitioning which yields the maximal heuristic value in the initial state I among all zero-one cost partitionings. Provide the corresponding heuristic value in I.
- (c) Provide a cost partitioning that yields a higher heuristic value than the cost partitionings from (a) and (b). What is the value of the corresponding heuristic in the initial state?

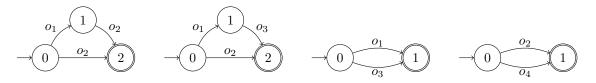
Exercise 11.2 (2 marks)

In the lecture, we have seen how to compute a uniform cost partitioning for a set of disjunctive action landmarks (chapter D2, slide 7 in the handout version). Analogously, the set of disjunctive action landmarks which is built during the computation of the LM-cut heuristic induces a (non-uniform) cost partitioning. For a sequence $\langle L_1, \ldots, L_n \rangle$ of disjunctive landmarks that is computed by LM-cut, formalize the induced cost partitioning $\langle cost_{L_1}, \ldots, cost_{L_n} \rangle$ by LM-cut.

Please turn around

Exercise 11.3 (3+1+1 marks)

Consider a planning task with four variables and with operator set $O = \{o_1, o_2, o_3, o_4\}$. The cost function is defined as $cost(o_i) = i$ for $i \in \{1, ..., 4\}$. Consider the four pattern databases induced by the four projections to the variables, which are given as follows (for brevity, self loops are omitted):



- (a) Provide the set of operator-counting constraints C from the post-hoc optimization heuristic for these four PDBs. Use the online LP solver available at http://www.phpsimplex.com/ to compute $h_C^{LP}(s_I)$. Attach a screenshot of the output of the LP solver to your solution.
- (b) Now consider the set of operator-counting constraints C', which contains the operatorcounting constraint from the disjunctive action landmark $L = \{o_3, o_4\}$ in addition to the operator-counting constraints from C. Provide C', use the online LP solver available at http://www.phpsimplex.com/ to compute $h_{C'}^{LP}(s_I)$ and attach a screenshot of the output of the LP solver to your solution.
- (c) Compare $h_{C'}^{LP}(s_I)$, $h^{\text{MHS}}(\{L\})$, and $h_C^{LP}(s_I)$ and discuss the differences.

The exercise sheets can be submitted in groups of two students. Please provide both student names on the submission.