

Planning and Optimization

M. Helmert, G. Röger
T. Keller, M. Wehrle

University of Basel
Fall Semester 2016

Exercise Sheet 3

Due: October 19, 2016

Exercise 3.1 (2+1+1+3 marks)

Consider the following propositional planning task $\Pi = \langle V, I, O, \gamma \rangle$.

- $V = \{\text{truck-A}, \text{truck-B}, \text{truck-C}, \text{package-A}, \text{package-B}, \text{package-C}, \text{package-truck}, \text{visited-A}, \text{visited-B}, \text{visited-C}\}$
- $I(v) = \mathbf{T}$ for $v \in \{\text{truck-A}, \text{visited-A}, \text{package-C}\}$, $I(v) = \mathbf{F}$ otherwise
- O contains the following operators, each with cost 1:
 - For $(X, Y) \in \{(A, B), (B, A), (B, C), (C, B)\}$:
 $\text{drive-}X\text{-}Y = \langle \text{truck-}X, \neg\text{truck-}X \wedge \text{truck-}Y \wedge \text{visited-}Y, 1 \rangle$
 - For $X \in \{A, B, C\}$: $\text{load-}X = \langle \text{truck-}X \wedge \text{package-}X, \neg\text{package-}X \wedge \text{package-truck}, 1 \rangle$
 - For $X \in \{A, B, C\}$: $\text{unload-}X = \langle \text{truck-}X \wedge \text{package-truck}, \neg\text{package-truck} \wedge \text{package-}X, 1 \rangle$
- $\gamma = \text{package-B} \wedge \text{visited-A} \wedge \text{visited-B} \wedge \text{visited-C}$

Informally, the task consists of a package that can be transported by a truck on a roadmap with three locations that are arranged on a line. The goal is to transport the package from location C to B , and having visited all locations at least once.

(a) We can find the mutex groups

$\{\text{truck-A}, \text{truck-B}, \text{truck-C}\}$ and $\{\text{package-A}, \text{package-B}, \text{package-C}, \text{package-truck}\}$

in Π . Use these mutex groups to derive an equivalent planning task Π' in finite-domain representation. Use reasonable variable names in Π' . For brevity, you are allowed to use the schematic operator notation used above to describe the operators in Π' .

(b) Compare and discuss the number of states in Π and Π' .
(c) Are there mutex groups $G \subseteq \{\text{visited-}X \mid X \in \{A, B, C\}\}$ with $|G| \geq 2$? Justify your answer.
(d) Transform Π' to transition normal form. For brevity, you are allowed to use the schematic operator notation used above to describe the operators.

Exercise 3.2 (1+4 marks)

Let s be a state, $\varphi = \varphi_1 \wedge \dots \wedge \varphi_n$ be a conjunction of atoms, and o be a STRIPS operator which adds the atoms a_1, \dots, a_k and deletes the atoms d_1, \dots, d_l (w.l.o.g., $a_i \neq d_j$ for all i, j). Prove the correctness of STRIPS regression by showing the following claims:

(a) If o is *not* applicable in s , then $s \not\models \text{sreg}_o(\varphi)$.
(b) If o is applicable in s , then the following holds: $s \models \text{sreg}_o(\varphi)$ if and only if $s[\![o]\!] \models \varphi$.

The exercise sheets can be submitted in groups of two students. Please provide both student names on the submission.