
Planning and Optimization

M. Helmert, G. Röger
T. Keller, M. Wehrle

University of Basel
Fall Semester 2016

Exercise Sheet 1
Due: October 5, 2016

For the runs with Fast Downward, set a time limit of 10 minutes and a memory limit of 2 GB.
Using Linux, such limits can be set with ulimit -t 600 and ulimit -v 2000000, respectively.

Exercise 1.1 (2+3+3+4 marks)

The Knight’s Tour Problem (Rösslesprung-Problem) is defined as follows.

• Given a chess board, which is empty except for a single knight K,

• find a sequence of moves such that every square is visited by K exactly once.

According to the rules of chess, the knight can move to any square that is two squares horizontally
and one square vertically, or two squares vertically and one square horizontally. On the course web-
site, you can find a tarball (knights tour.tar), containing the domain file knights tour.pddl

and problem files for a Knight’s Tour problem on a 5× 5 board (knights tour5.pddl) and on an
8 × 8 board (knights tour8.pddl).

a) Run Fast Downward on knights tour5.pddl and knights tour8.pddl, using A∗ search
and the canonical PDB heuristic (h=cpdbs()), the maximum heuristic (h=hmax()), and the
blind heuristic (h=blind()). Compare the results with respect to time, number of expanded
states, and plan costs. Recall that Fast Downward with A∗ is executed as:

./fast-downward.py <domain.pddl> <problem.pddl> --heuristic "h=<heuristic>"

--search "astar(h)"

b) Create a domain knights tour blocked.pddl which differs from knights tour.pddl only
in the fact that squares on the board can be blocked in a way that the knight cannot
jump on blocked squares. Based on knights tour8.pddl, generate two problem files named
knights tour8 blocked 1.pddl and knights tour8 blocked 2.pddl so that h1 is blocked
in the former, and a1, b1, c1, d1, f1, g1, and h1 are blocked in the latter. You also have to
modify the goal state such that only unblocked squares must be visited. Run Fast Downward
with A∗ and h=cpdbs() on the modified problems. Compare and discuss the results with
the results from a) with respect to time, number of expanded states, and plan costs.

c) Blocking squares (and requiring that only unblocked squares need to be visited in the goal)
can yield unsolvable problems. Identify a criterion to generate unsolvable problems. Justify
your answer. Create an unsovable problem knights tour8 blocked 3.pddl and apply Fast
Downward (A∗, h=cpdbs()). Discuss the number of expanded states and the search time.

d) Consider the Duplicate Knight’s Tour problem where the knight can additionally duplicate
itself once while moving. For this, there is an additional action duplicate(?from ?to) that
differs from the regular move action by simultaneously moving the knight to ?to while still
keeping the knight at ?from. In other words, the knight is at both squares simultaneously af-
terwards. The duplicate action is applicable at most once. Implement the Duplicate Knight’s
Tour problem in knights tour duplicate.pddl and knights tour8 duplicate.pddl by
adjusting knights tour.pddl and knights tour8.pddl accordingly. Run Fast Downward
on the problem, using A∗ and the heuristics from part a). Discuss the results with respect
to time, number of expanded states, and plan costs compared to the results from part a).

For parts b), c) and d), please also submit the modified PDDL files.

The exercise sheets can be submitted in groups of two students. Please provide both student names
on the submission.


