

Planning and Optimization

M. Helmert, G. Röger
T. Keller, M. Wehrle

University of Basel
Fall Semester 2016

Classroom Exercise 1

For the runs with Fast Downward, set a time limit of 1 minute and a memory limit of 2 GB. Using Linux, such limits can be set with `ulimit -t 60` and `ulimit -v 2000000`, respectively.

Exercise 1 (Running Fast Downward)

Play around with the Fast Downward planner:

(a) Download `puzzles.tar` from the website. The file contains a PDDL formulation of the 15-Puzzle (`puzzle.pddl`, `puzzle01.pddl`) and of the Weighted 15-Puzzle (`weight.pddl`, `weight01.pddl`). To run Fast Downward, use the script `fast-downward.py` with the corresponding domain and problem files, specifying the search algorithm and the heuristic. Example for the 15-Puzzle, greedy best first search and the FF heuristic:

```
./fast-downward.py tile/puzzle.pddl tile/puzzle01.pddl --heuristic "h=ff()"  
--search "eager_greedy(h)"
```

Run Fast Downward on the 15-Puzzle and the Weighted 15-Puzzle, using greedy best first search and different heuristics:

- FF heuristic: `ff()`; additive heuristic: `add()`; blind heuristic: `blind()`

(b) Compare the results with respect to time, number of expanded and generated states, and solution quality.

Exercise 2 (Glued 15-Puzzle)

Consider a modified version of the 15-Puzzle where some tiles are *glued* to their initial position. Tiles that are glued cannot be moved by any action. Modify the PDDL formulation of the domain file `puzzle.pddl` and the problem file `puzzle01.pddl` accordingly:

- Introduce an additional predicate `GLUED` in the domain file that indicates whether a tile is glued or not. Modify the action descriptions such that only tiles that are not glued can be moved.
- Modify the problem file such that tile 6 is glued.
- Run Fast Downward on the Glued 15-Puzzle with greedy best first search and the heuristics from Exercise 1. Compare the results with the results for the 15-Puzzle and the Weighted 15-Puzzle with respect to time, number of expanded and generated states, and solution quality.

Exercise 3 (Cheating 15-Puzzle)

Consider another modified version of the 15-Puzzle where it is allowed to *cheat* in the sense that there are actions that

- allow to remove a tile from the frame (leaving the former position of the tile blank), and
- allow to reinsert a removed tile at any blank position.

Modify the PDDL formulation of the 15-Puzzle accordingly. Run Fast Downward on the Cheating 15-Puzzle with greedy best first search and the heuristics from Exercise 1. Compare the results with the results for the 15-Puzzle, the Weighted 15-Puzzle and the Glued 15-Puzzle with respect to time, number of expanded and generated states, and solution quality.

Please form groups of two students for classroom exercises.