
Game-Tree Search over High-Level Game States in RTS
Games, by A. Uriarte and S. Ontañón

Marko Obradovic

University of Basel

Search and Optimizatin Seminar

November 5, 2015

Marko Obradovic Search and Optimization November 5, 2015 1 / 18



Outline

1 Introduction
Characteristics of Real-Time Strategy Games
Motivation

2 High-level Abstraction in RTS Games
State Representation
Actions

3 High-Level Game-Tree Search
High-Level State Forwarding
High-Level State Evaluation
High-Level Game-Tree Search Algorithms

4 Experimental Results

5 Conclusion

Marko Obradovic Search and Optimization November 5, 2015 2 / 18



Characteristics of Real-Time Strategy Games

Real-Time Strategy Games

In Real-Time Strategy (RTS) games the player’s goal is to gather
resources, build bases and establish military power in order to win against
his opponents.

RTS games have the following important characteristics:

simutaneous moves

durative actions

real-time game playing

e.g. StarCraft where players participate in a wage war across the galaxy

Marko Obradovic Search and Optimization November 5, 2015 3 / 18



Motivation

Problems of RTS games

Due to their characteristics, RTS games have an enormous state space
which results in a very large branching factor. Thus, the applicability of
game-tree search algorithms is very limited.

Given a game state, there are...

many possible actions a player could execute
many possible paths in a game-tree

Figure: e.g. branching factor in StarCraft

Marko Obradovic Search and Optimization November 5, 2015 4 / 18



Motivation

Basic Idea =̂ Abstraction

Address large branching factors by introducing a high-level game state
representation.

Goals of high-level game state representation:

significantly shrink state space
→ enable applicability of game-tree search algorithms

Focus on combat scenarios:

capture only army information
→ placement of combat units in the game state

apply game-tree search for controlling high-level army movements
→ actions for combat units

Marko Obradovic Search and Optimization November 5, 2015 5 / 18



High-level Abstraction in RTS Games

The high-level game state abstraction involves two important elements:

State Representation

Basic idea:

decompose map into regions by grouping unblocked cells
→ ignore single cells

group combat units by region and unit type
→ ignore individual units and their exact (x,y)-location on the grid

Actions

Basic idea:

define a set of high-level actions that can be applied to groups of
combat units
→ ignore actions of single combat units

Marko Obradovic Search and Optimization November 5, 2015 6 / 18



State Representation

Map decomposition: Step #1

Perkins algorithm: divide map into set of regions R ′ = {r ′1, ..., r ′m}
connected by chokepoints C = {c1, ..., cq}
Chokepoints: cells (red) that define strategic bottlenecks
→ connectors of exactly two regions

As graph: regions r ′i are vertices, chokepoints cj are edges (later also
vertices)

r' 4

r' 1
r' 2

r' 3

Marko Obradovic Search and Optimization November 5, 2015 7 / 18



State Representation

Map decomposition: Step #2

Chokepoint cells are centers of bottleneck regions

Margin of the bottleneck region defined by radius of chokepoint cell

Cells within margin belong to the region generated from chokepoint

Remaining regions contain cells from r ′i that are not part of any
region around a chokepoint

r' 4

r' 1
r' 2

r' 3
r 8

r 1
r 3

r 9

r 2

r 5
r 4

r 6 r 7

Result:
set of regions
R = {r1, ..., rn}

Marko Obradovic Search and Optimization November 5, 2015 8 / 18



State Representation

Grouping of combat units

Combat units are grouped by unit type and by region
→ if same unit type and located in same region, then same combat
unit group, e.g. TankRegion3

8

1
3

9

2

5
4

6 7

Unit Type Size Region

Tank 3 3

Tank 2 1

Tank 2 1

Base 2 3

Base 3 8

Marine 6 8

Marko Obradovic Search and Optimization November 5, 2015 9 / 18



Actions

Set of high-level actions

N/A: action only for army buildings (e.g. bases) and means do
nothing since buildings cannot perform any combat action

Move: move from current region to a neighboring region

Attack: attack any enemy in current region

Idle: do nothing during 400 game frames

Note: High-level actions are applied to whole combat unit groups, not to
individuals

Marko Obradovic Search and Optimization November 5, 2015 10 / 18



State Representation and Actions: Example

Exemplary high-level game state representation table resulting from
previous map:

Player Unit Type Size Region Order Target End Frame

1 Tank 3 3 Move 2 240

1 Tank 2 1 Attack 1 370

2 Tank 2 1 Idle - 400

1 Base 2 3 N/A - -

1 Base 3 8 N/A - -

1 Marine 6 8 Move 4 150

Table: Units grouped by region and type

Marko Obradovic Search and Optimization November 5, 2015 11 / 18



High-Level Game-Tree Search

High-level game-tree search requires two more pieces:

High-Level State Forwarding

RTS games have simultaneous and durative actions

During game-tree search the game is not played
→ no waiting for action to complete

Idea: jump to next decision point where at least one player can
execute an action

High-Level State Evaluation

Game-tree search algorithms need to choose a game state node to
expand according to adequate criteria

Idea: define evaluation function that tells how good a high-level
game state is

Marko Obradovic Search and Optimization November 5, 2015 12 / 18



High-Level State Forwarding

High-level state forwarding has two components:

End frame prediction

Jumping to next decision point requires knowing the end frames of
actions
→ estimate the duration of actions, i.e. when they are completed

e.g. Move action: end frame estimation based on distances between
region centers and speed of combat unit types

Simulation

Identification of smallest end frame of a game state and jump there

After jumping outcome update of completed actions required

e.g. Move action: update group position with target position

Marko Obradovic Search and Optimization November 5, 2015 13 / 18



High-Level State Evaluation

Game state evaluation functions define how good a game state is

Example in paper: Use destroy score of a combat unit in StarCraft
→ consider the costs (e.g. for the resources) to build that unit

Marko Obradovic Search and Optimization November 5, 2015 14 / 18



High-Level Game-Tree Search Algorithms

Two high-level game-tree search algorithms were used for the experiments:

Monte Carlo Tree Search Considering Durations (MCTSCD)

Alpha-Beta Considering Durations (ABCD)

Note: both are extensions of standard tree search algorithms to deal with
simultaneous moves and durative actions

Marko Obradovic Search and Optimization November 5, 2015 15 / 18



Experimental Results

Evaluation using two StarCraft game maps:

ABCD and MCTSCD tested against scripted algorithm and built-in AI

Win ratio comparison

hand-scripted (100%) > MCTSD (∼90%) > ABCD (∼80%)
> StarCraft’s built-in AI (∼20%)

Branching factor

only grows beyond 1010 when large number of groups (> 30)

Marko Obradovic Search and Optimization November 5, 2015 16 / 18



Conclusion

Presented game state abstraction is useful:

branching factor highly reduced

state space shrinked and simplified, but still between 80% and 90% of
wins achieved in experiments

StarCraft’s built-in AI defeated

→ problem transformed to a level that can be handled by game-tree search
→ resulting actions are meaningful in the game

Weak points:

some facts are not further explained (e.g. search every 400 frames)

game paused while search is performed

approach limited to combat scenarios

Marko Obradovic Search and Optimization November 5, 2015 17 / 18



Questions?

Marko Obradovic Search and Optimization November 5, 2015 18 / 18


	Introduction
	Characteristics of Real-Time Strategy Games
	Motivation

	High-level Abstraction in RTS Games
	State Representation
	Actions

	High-Level Game-Tree Search
	High-Level State Forwarding
	High-Level State Evaluation
	High-Level Game-Tree Search Algorithms

	Experimental Results
	Conclusion

