Techniques for Al-Driven Experience Management in Interactive Narratives

KADIR OZGUR UNIVERSITÄT BASEL 26.11.2015

SUPERVISED BY FLORIAN POMMERENING

Little Red Riding Hood

- Red brings cake to grandmother
- Comes across to the wolf
- Wolf eats Grandmother

• What would be happen if the Red kills the Wolf?

Al-Driven Experience Management Techniques General Overview

Introduction

- Al for automated story generation
- Author's goals vs. Player's goals
- AI GM (Game Master)
- Generate stories dynamically
- Select based on play style, goals, emotions, …

Al-Driven Experience Management Planning Domain Definition Language (PDDL)

- Parameters
- Preconditions
- Effects

Al-Driven Experience Management Techniques General Overview

- General Overview
- Narrative Generation
- Play Style Modeling
- Goal Inference
- Emotional Modeling
- Objective Function Maximization
- Machine-Learned Narrative Selection

AI-Driven Experience Management Techniques Narrative Generation

- Automated Planner
- Al Planner assembles start-to-finish narratives during gameplay
- Consistency between GM goals and player goals
- Satisfaction of particular story
- Dynamically and real time

Al-Driven Experience Management Techniques Play Style Modeling

- Narrative selection
- Modeling the player as vector of numbers
- Canonical RPG Types (F:o.9, M:o.2, S:o.1, T:o.4, P:o.3)
- AI GM observation
- AI GM real time update

Al-Driven Experience Management Techniques Goal Inference

Play Style Inclination	Goal 1: Kill Grendel	Goal 2: Avoid Grendel
Fighter	0.9	0.1
Method actor	0.7	0.3
Storyteller	0.2	0.6
Tactician	0.4	0.8
Power gamer	0.6	0.1

$$\begin{pmatrix} 0.9 & 0.7 & 0.2 & 0.4 & 0.6 \\ 0.1 & 0.3 & 0.6 & 0.8 & 0.1 \end{pmatrix} \times \begin{pmatrix} 0.9 \\ 0.2 \\ 0.1 \\ 0.4 \\ 0.3 \end{pmatrix} \approx \begin{pmatrix} 1.31 \\ 0.56 \end{pmatrix}$$

- To AI GM infer the player's current goals
- Player inclinations
- What happens if a new killer would be introduced?
- The player model
 (F: 0.9, M: 0.2, S: 0.1, T: 0.4, P: 0.3)
- Normalization of $\binom{1.31}{0.56} \cong (0.7, 0.3)$

Al-Driven Experience Management Techniques Emotional Modeling

- Having idea about player's current emotions
- Appraisal-style model of emotions
- (J:o.8, H:o.6, F:o.2, D:o)
- An appraisal-style model needs to know the player's goals and the likelihood of accomplishing
- Example; kill or avoid Grendel (0.7, -0.3), player has 50% chance kill and 10% of dying, hopeful at the intensity of 0.5 × 0.7 = 0.35 No longer hope, but joy.
 Killing is uncertain, there is no joy from it yet. Fear 0.1 * 0.3=0.03

Final: (J:o, H:o.35, F:o.o3, D:o)

AI-Driven Experience Management Techniques Objective Function Maximization

- Annotation of narratives with respect to different styles of play
- Example, introduce Grendel (F: 0.9, M: 0, S: 0, T: 0, P: 0) introduce magic fairy (F: 0, M: 0, S: 0.9, T: 0, P: 0)
- Dot product between the player inclination model and each annotation
- The narrative with the highest dot product
- $(0.9 \ 0 \ 0 \ 0 \ 0) \cdot (0.9 \ 0.2 \ 0.1 \ 0.4 \ 0.3) = 0.81$ (introduce Grendel) (0 0 0.9 0 0) $\cdot (0.9 \ 0.2 \ 0.1 \ 0.4 \ 0.3) = 0.09$ (introduce magic fairy)

AI-Driven Experience Management Techniques Machine Learned Narrative Selection

- Automatically acquire a mapping from game and player states to the set of alternative narratives
- Appropriate when training data are available
- Example, Similar with how Internet search engines map user queries to a ranked list of web pages
- Implemented by SCoReS approach

Implementation Approaches

- PaSSAGE (Player-Specific Stories via Automatically Generated Events)
- PAST (Player-Specific Automated Storytelling)
- PACE (Player Appraisal Controlling Emotions)
- SCoReS (Sports Commentary Recommendation System)

Implementation Approaches Player-Specific Stories via Automatically Generated Events (PaSSAGE)

- An interactive storytelling system
- Uses player modelling to automatically learn a model of the player's preferred style of play
- Combines two techniques:
 - play style inclination modeling
 - maximizing a simpler version of the aforementioned objective function
- Chooses among story branches

Implementation Approaches Player-Specific Automated Storytelling (PAST)

- Combines the AI planner of Automated Story Director (ASD) and the playstyle model of PaSSAGE
- Uses a PaSSAGE style model of playstyle inclinations
- Automatically update from the player's actions
- Automated Story Director (ASD) to compute narratives

Implementation Approaches Player Appraisal Controlling Emotions (PACE)

- Uses four techniques of narrative generation
 - play style modeling
 - goal inference
 - emotion modeling
 - more advanced type of the objective function
- selects the narrative that brings the player closest to the target emotional trajectory
- Example, *iGiselle*

Implementation Approaches Sports Commentary Recommendation System (SCoReS)

- Machine-learned narrative selection
- Automatically suggest stories for commentators to tell during games
- Selects story within library in sport games
- Learns offline to connect sports stories
- Learned mapping is then used during baseball games to suggest relevant stories

Conclusion

- Conflict between authorial and player goals
- AI GM and Automated Planning System
- Story selection and generation approaches
- Implementations